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HOW DO YOUR STUDENTS THINK ABOUT PROOF?  

A  DVD  RESOURCE FOR MATHEMATICIANS 

Lara Alcock 

University of Essex, UK 

 

This paper is about the construction and initial testing of a DVD resource designed to 

help mathematicians learn more about their students’ reasoning and engage with 

issues from mathematics education.  The DVD uses specially annotated video data, 

together with screens of prompts for reflection, to encourage discussion among 

mathematicians about students’ difficulties and successes.  In the paper I describe part 

of the content in detail, showing how a short episode can raise many major issues in 

the learning of proof.  I also report on design issues in the structure of the DVD, and on 

mathematicians’ responses to an early version of the content.  

INTRODUCTION: DVD PURPOSE AND STRUCTURE 

Few mathematicians have time to read education research papers, so if we want them 

to be able to benefit from the ideas and results of mathematics education, we need to 

find ways to make these more accessible.  This paper reports on a project that aims to 

do this by providing a DVD resource in which mathematicians can watch individual 

students engage with proof-based mathematics problems
1
.  Video episodes have been 

edited so that half of the screen shows the student working and the other half shows 

subtitles at the bottom in blue, and the student’s written work in large print in black at 

the top (a screen shot is provided in Figure 1).  Both the subtitles and written work 

change in real time, enabling the viewer to follow the student’s thinking as easily as 

possible.  The content of each episode is divided into 2-3-minute segments, after each 

of which the viewer sees a screen of questions designed to prompt reflection on what 

has been seen.  In this way, mathematicians are invited to analyse this data for 

themselves, attempting to accurately characterise what they see and debating the 

learning and teaching issues that arise.  They are thus able to engage with the process of 

mathematics education, rather than to passively consume its products.  For another 

project with a similar ethos, see Nardi & Iannone (2004).   

In this paper I describe one video episode, which has now been shown in presentations 

to four groups of mathematicians in the UK and the USA.  In this episode, Nick 

attempts a problem about upper bounds.  In this paper I demonstrate how a single short 

episode can raise numerous issues in mathematics education at the transition-to-proof 

level, including: 

                                           

1
 This project is a Higher Education Academy Maths, Stats & OR Network funded activity. 
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• Students’ understanding of abstract mathematical concepts and the way in which 

these must relate to definitions (cf. Vinner, 1991; Moore, 1994). 

• Students’ use of examples in their mathematical reasoning (cf. Bills et. al., 2006; 

Dahlberg & Housman, 1997). 

• Students’ strategies for proving and the extent to which they apply these effectively 

(cf. Alcock & Weber, in press; Weber, 2001). 

• Students’ understanding of what constitutes a proof, and the relationship between 

counterexamples and proof (cf. Recio & Godino, 2001; Iannone & Nardi, 2004). 

 

 Figure 1: Screen shot from the DVD. 

DATA: DVD CONTENT 

The data used for the DVD was gathered at a large state university in the USA.  The 

participants were all enrolled in a transition-to-proof course called “Introduction to 

mathematical reasoning,” in which they studied methods of proof in the context of 

abstract topics such as sets, functions and number theory. Each participant was 

interviewed individually, and during the interview was asked to attempt three tasks.  
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Each task was given on a piece of paper; the student was told they could write on the 

paper and was asked to describe their thinking out loud.  The interviewer remained 

silent except to remind the participant of this request and to clarify the nature of the 

task.  In this paper we see Nick working on the third of the three tasks: 

Let R⊆A  be a nonempty set.  U is an upper bound for A if and only if Aa∈∀ , 

ua ≤ . 

Task:  Suppose that R⊆BA,  are nonempty sets, u is an upper bound for A and v is an 

upper bound for B.  Prove or disprove: 

1. vu +  is an upper bound for BA∪ . 

2. uv  is an upper bound for BA∪ . 

3. vu −  is an upper bound for BA∩ . 

The reader will note that all three statements are false, so that in each case a “disproof” 

is required and hence a counterexample is needed.  This makes the task different from 

those that most students will encounter in such courses.  This was a deliberate research 

design choice, since I wanted to avoid questions that could be answered using a 

standard procedure.  

The data was originally intended for research purposes only, so the content that could 

be used for creating the DVD was constrained by the limited number of students who 

agreed to allow their interviews to be used for this purpose.  Fortunately, two of these 

in particular (Nick included) were articulate in expressing their thinking and made 

good progress on the interview tasks, without producing perfect solutions and without 

being maximally efficient.  In my view this type of data is particularly suited to this 

purpose, because it can provide valuable insight into what might reasonably be 

expected from a competent student and what we might therefore realistically hope to 

teach our students to do at this level.   

RESULTS: NICK’S ATTEMPT AND MATHEMATICIANS’ RESPONSES 

Here I describe the four segments of video content in which Nick works on the upper 

bounds task, and give a short overview of the issues each raised for the mathematicians 

who have seen presentations of this material.   

Segment 1: An incorrect general argument 

Nick began by reading the task and writing the following symbolic summary of the 

given information.  He then paused for several seconds and then announced his 

thoughts as follows: 

In my head I’m thinking, alright, if u is the upper bound for A, and v is the upper bound for 

B…whichever…set has the higher number…pretty much, that’s going to be the upper 

bound.  So the upper bound for A union B is either going to be u or v, so the sum of them 

will be the upper bound. 
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Nick next stated that he now needed to “figure out a way to prove this”, and after a 

considerable pause went on to consider two cases: u is greater than v and vice versa.  

He then explained that  

…for the case where u is less than v, the upper bound would just be v.  And in the other case 

the upper bound would just be u.  Now it says for like both cases – the upper bound just 

means that it’s greater than any number in that set.  So, if it’s u plus v that also means it 

could be…say…3u plus 3v.  […]  So, if either one of these is an upper bound, I would say 

the sum of them is an upper bound.  Because v plus u is greater than v.  Because u cannot be 

zero because it’s not a…non-empty set.  Or it can be zero so we’ll say greater than or equal 

to. 

He then made the similar argument for the other case, and finished this first attempt by 

saying, “So, I would guess that would prove that v plus u is an upper bound.” 

One common observation about this segment was that Nick repeatedly used the phrase 

“the upper bound”; mathematicians noted that he appeared to be confusing the idea of 

upper bound with that of either supremum or maximum element, which raised issues 

about conceptual understanding and the role of definitions in mathematics (cf. Moore, 

1994; Vinner, 1991).  Another observation was that his argument does not work for 

negative upper bounds.  This raised issues about students’ understanding of the range 

of examples to which a statement might apply (cf. Bills et.al., 2006; Watson & Mason, 

2002).   

Segment 2: Consideration of negative numbers 

Nick moved on to question 2 in the task and, after reading the question and pausing, he 

said, 

Those could be negatives too…. What if […] what if B has a maximum of a negative 

number? 

He then reconsidered his first answer, observing that since A and B are subsets of the 

reals, either u or v could be negative.  He then made the following comment about the 

overall task structure: 

It says “prove or disprove”.  I didn’t actually – I thought it said “prove”.  My teacher never 

actually gives us a “disprove”. 

Having established this, he went on to reason as follows. 

If the set B is all negative numbers…that means its upper bound could be a negative 

number.  So u plus v would be less than u.  So it would not necessarily be greater. […] And, 

pretty much, this [indicating his earlier statement that uvu ≥+ ] is not true…if u or v are 

negative. 

He then offered the following comment on his own reasoning: 

I don’t know how good a proof that is.  But we’ll continue and go back to it if I think of 

anything else. 
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One common observation about this segment was that Nick had now resolved the issue 

of negative upper bounds, though there still seemed to be some confusion about the 

precise meaning of the term.  Another was that he had not provided a specific 

counterexample, though he appeared to understand what properties this would need to 

have.  This raised issues about students’ understanding of what is required for a proof 

(cf. Recio & Godino, 2001) and the nature and use of counterexamples (cf. Iannone & 

Nardi, 2004).  A third was that Nick’s expectations of the task itself seemed to have 

had quite an impact on his first attempt at question 1.  This raised issues about potential 

alternatives to the standard form of mathematical tasks, an in particular tasks that 

required some form of example generation (cf. Watson & Mason, 2002). 

Segment 3: Using specific examples 

Nick next re-read part 2 of the task and then said, 

Well for the same reason, that’s false.  If u is negative and v is positive…then…the upper 

bound could be a negative number, and that’s not going to be and upper bound for…the 

one with positive values. 

He then hesitated before writing the following, noting that uv being an upper bound of 

BA∪  would mean that uv was an upper bound of both A and B.  

uv is an UB of BA∪   

uv UB A and uv UB B   

uuv
?

≥   vuv
?

≥  

Having written this down, he began to restate his suggestion that v could be negative if 

the set B contained all negative values.  He then interrupted himself to give the 

following comment on the structure of his argument: 

Pretty much, to prove something – to disprove something you’d find an example, or let 

something exist.  So, if B is a negative set – or a set of all, of only negative numbers, that 

means its upper bound could be a negative number.  Meaning that this [indicating uuv
?

≥ ] is 

not true if v is negative.  

He then commented, 

So, there’s many other cases, but if – all you need to do is find one example, so that would 

be my one example. 

Observations about this segment again focused on the fact that although Nick had 

given a correct condition under which upper bounds of the sets would not be related as 

in the question, and although he had mentioned the strategy of giving an example, he 

still had not done so.  This raised issues about the extent to which students are inclined 

to introduce examples and are able to use these effectively to assist them in their 

reasoning (cf. Alcock & Weber, in press; Dahlberg & Housman, 1997; Weber, Alcock 

& Radu, 2005). 
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Episode 4: Considering the role of counterexamples 

Nick then moved on to the final part of the question, and this time he did introduce a 

specific example.  He said, 

If A is a set…this could be any set.  I’ll go 2…7.  2 through 7.  And B is the set of…negative 

5 to 2.  Then we’re saying that u…in this case it would be 7 and 2.  Saying that 5 is the 

upper bound of A and B.  Of the intersection.  That works in this case...mainly 

because…but what if it was…?  Let’s make them closer together.  If A is 2 through 7 again, 

and B is…2 through 6.  That would mean that, u minus v is 7 minus 6.  It doesn’t have to be 

– those are just examples of it.  Trying to find an example where it doesn’t work.  And 

you’d get 1, which is not an upper bound.  Of A n B.  Because A n B equals 2 through 6.  A 

n B is just B.  So this…I’ve found an example where it doesn’t work.  So that would, pretty 

much…I have my way of proving that.  I have to pretty much write the proof itself 

because….  Actually… 

He then asked the interviewer, 

Do I have to write the proof, if I can find an example?  To disprove it?  

The interviewer said that she would not answer questions of that nature at this point in 

the interview.  After a good-natured groan, Nick then went on to look back at his first 

page.  He hesitated and then said, 

I was always told that to disprove something, all you need is an example where it doesn’t 

work.  So I’m just going to have this example…where u equals 7, v equals 6, u minus v 

equals 1.  Which is not an upper bound of A intersect B, which is 2 through 6. 

Having written this down, Nick then turned back to the previous questions again and 

said,  

Actually now thinking that…all you need is an example…I really did not need to go 

through any of this.  All I had to do was write an example for every one. 

At this point he smiled and gave a good-natured curse, and then went on to provide 

examples for the previous parts of the question.  For both parts he wrote A = {(2,7)}, 

B={(-10,-3)} (note his misuse of set notation; once again he said “through,” indicating 

that he meant the set of numbers between 2 and 7 etc.).  After writing down these 

examples and calculating vu +  and uv respectively, he said,  

So all you need to do is find one.  And there’s my one, so now I’m done with this one. 

By this point, Nick did sound confident that this “give a single counterexample” 

strategy achieved what was required.  So it was interesting that this part of the 

interview then concluded with the following exchange: 

N: Now can you answer the question for me? 

I: What was the question again? 

N: Can you use an example to disprove something? 

I: Yes. 

N: Alright. 
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It is worth noting, however, that by this stage he did not seem surprised by the 

interviewer’s response. 

Observations about this part of the interview tended to focus on Nick’s use of examples 

to support his mathematical reasoning (cf. Alcock & Weber, in press; Dahlberg & 

Housman, 1997; Weber, Alcock & Radu, 2005) and on the apparent developments in 

his understanding of the relationship between counterexamples and proof (cf. Recio & 

Godino, 2001; Iannone & Nardi, 2004).  

DISCUSSION 

Design of the DVD 

The first thing to note is that the divided-screen format was extremely successful in 

allowing viewers to follow the students’ reasoning.  No-one in any of the presentations 

felt any need to remark upon it, and those who were specifically asked all said that they 

could follow it perfectly.  A second point is that I realised while presenting the material 

that by splitting it into the obvious segments, I had unintentionally created 

“cliff-hangers”: each segment ends with some kind of error or ambiguity in Nick’s 

thinking, which he then resolves to some extent in the next segment.  This is obviously 

not a necessary feature for such a presentation, but with hindsight it proved effective in 

two ways.  First, having unresolved errors or ambiguities at breaks in the video seemed 

to provide the impetus for serious debates among the mathematicians about the precise 

nature of the errors, the possible sources of these and the way in which such errors 

might be resolved or avoided.  Second, it gave the presentations a sense of drama – for 

most viewers there seemed to be strong sense of resolution and relief at various points, 

in particular when Nick first did begin to consider negative numbers.  Given my goal of 

making a resource that would be engaging and enjoyable, this is obviously a plus.   

What the mathematicians learned 

I was pleased to find that the video-based presentation generated much discussion 

about the issues noted above.  Many of the mathematicians present were keen to 

continue the discussions with me and with each other, and to hear more about the ways 

in which these issues are conceptualised within the mathematics education community.  

There were also three overarching themes that regularly occurred in summary 

discussion sessions, which I outline briefly here. 

First, there was discussion of the general difficulty of discerning a student’s thinking 

from their written work.  Many of those who saw the presentation noted that what Nick 

said often indicated a greater understanding than what he wrote down.  Second, there 

was reflection upon the mathematicians’ own role in both task design and direct 

teaching situations.  Many people noted that Nick’s capacity for self-correction seemed 

to be higher than they might ordinarily allow for – that they would have interrupted 

him as he made his errors, but that having seen this video they would think twice about 

doing so in similar situations in future.  Finally, a common remark at the end of the 

video was that Nick was quite a strong student, and that his thought processes were 
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obviously not perfect but were, in fact, almost exactly like those used by 

mathematicians in their own work.  They noted that his errors, struggles, explorations, 

moments of insight and moments of uncertainty were very much like their own, and 

they accorded him considerable respect for his reasoning.  In this, at least some had 

moved on considerably from initial amusement or horror at his errors and impatience 

with his slowness to invoke suitable strategies.  Such respect for a student’s thinking is 

surely a good basis for further serious engagement in issues in mathematics education. 
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TEACHERS’ CONCEPTIONS OF MATHEMATICAL 

CHALLENGE IN SCHOOL MATHEMATICS 

Mark Applebaum* and Roza Leikin** 

*Kaye Academic College of Education, Beer Sheva, Israel / 

**University of Haifa, Haifa, Israel 

This study arose from our belief that mathematics should be challenging in any 

mathematics classroom. We analyse conceptions of mathematical challenge of two 

groups of experienced mathematics teachers. The first group was asked to define the 

notion of mathematical challenge and give examples of challenging mathematical 

tasks (N1=9). The second group of teachers was presented with a questionnaire 

based on the replies of the teachers from the first group (N2=41). We found that the 

teachers have a broad conception of mathematical challenge, appreciate relativity of 

mathematical challenge, but are not always convinced of the possibility of 

incorporating challenging mathematics in everyday classroom.  

BACKGROUND 

The role of challenge in mathematics education 

This study is inspired by our participation in ICMI-16 study group "Challenging 

mathematics in and beyond the classroom". Peter Taylor (2006) in his presentation of 

the agenda of the conference wrote: "Challenge is not only an important component 

of the learning process but also a vital skill for life. People are confronted with 

challenging situations each day and need to deal with them. Fortunately the processes 

in solving mathematics challenges (abstract or otherwise) involve certain types of 

reasoning which generalise to solving challenges encountered in every day life".  

In Cambridge Advanced Learner's Dictionary
 
'challenge' is defined as 'difficult job', 

something needing great mental (or physical) effort in order to be done successfully. 

Incorporation of a mathematical challenge in learning/teaching process involves both 

psychological and didactical considerations.  

Principles of 'developing education’ (Davydov, 1996), which integrate Vygotsky’s 

(1978) notion of ZPD (Zone of Proximal Development) claim that to develop 

students mathematical reasoning the tasks should not be too easy or too difficult and 

the learners have to approach any task through meaningful activity. Another 

perspective on mathematical challenge may be seen in differentiation between 

‘exercises’ and ‘problems’. According to Polya (1973), Schoenfeld (1985), and 

Charles & Lester (1982) mathematical task is a problem when it incorporates a 

challenge for learners. It should (a) be motivating; (b) not include readily available 

procedures; (c) require an attempt; and (d) have several approaches to solution. 

“Obviously, these criteria are relative and subjective with respect to a person’s 

problem-solving expertise in a particular field, i.e. a task that is cognitively 
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demanding for one person may be trivial (or vice versa) for another” (Leikin, 2004, p. 

209). 

Teachers' role in devolution of challenging mathematical tasks 

Jaworski (1994) claimed that mathematical challenge together with sensitivity to 

students, and management of learning are core elements of teaching. In order to 

develop pupil's mathematical understanding a teacher must create situations that 

demand from the students' mental effort. Teachers' choices of mathematical tasks for 

their classes and the ways in which these tasks are introduced to students determine 

the quality of mathematics in the classroom (e.g., Simon, 1997; Steinbring, 1998). 

However, many teachers choose conventional tasks for their lessons and guide 

students towards 'standard' solutions (Leikin & Levav-Waynberg, accepted). Simply 

providing teachers with ready-to-use challenging mathematical activities is not 

sufficient for their implementation. The teachers should be aware and convinced of 

the importance of mathematical challenge in teaching and learning mathematics, they 

should ‘feel safe’ when dealing with such kind of mathematics (mathematically and 

pedagogically) and have autonomy (Krainer, 2001) in employing this kind of 

mathematics in their classes. 

Teachers' knowledge and beliefs 

Teachers' knowledge and beliefs are interrelated and both have very complex 

structure that determines teachers' decision making when planning, performing, and 

reflecting. In this study we consider mathematical challenges as an integral part of 

teachers' content knowledge (Shulman, 1986). From this point of view teachers’ 

subject-matter knowledge comprises their own understanding of the essence of 

mathematical challenge, their knowledge of challenging mathematics, their ability to 

approach challenging tasks. In this study teachers' conceptions of mathematical 

challenge are an integral part of teacher's subject-matter knowledge attributed to their 

meta-analysis of mathematical content to be taught.  Teachers’ pedagogical content 

knowledge includes knowledge of how students cope with challenging mathematics, 

as well as knowledge of appropriate learning setting. Teachers’ curricular content 

knowledge includes knowledge of different types of curricula and understanding 

different approaches to teaching challenging mathematics.  

THE STUDY 

The purpose and the questions 

This is the first stage of an ongoing study that analyses development of teachers’ 

conceptions of mathematical challenge. At this stage we explored teachers’ views of 

mathematical challenges through the content analysis of their definitions and 

examples. The main research question here is: What kinds of mathematical challenge 

teachers mention in their definitions? What types of mathematical problems teacher 

provide as examples of challenging tasks? How teachers rank different criteria of 
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mathematical challenge? How teachers rank mathematical tasks with respect to the 

challenge they embrace?  

Procedure and tools 

Two groups of in-service secondary school mathematics teachers with at least 10 

years of experience took part in our study. Group A included 9 teachers, Group B 

included 41 teachers. There were two stages in this research:  

Stage 1: The teachers from Group A were asked to complete an open Questionnaire-

1 that included 2 assignments: (1) to define mathematical challenge; (2) to give two 

examples of mathematically challenging tasks and explain how they illustrate 

mathematical challenge (for the effectiveness of examples as a research tool see 

Zazkis & Leikin, accepted). After completing Questionnaire-1 the teachers discussed 

their definitions and examples. They were asked to solve the tasks given as examples 

by other teachers and evaluate challenge incorporated in the tasks. Lastly the teachers 

were asked to choose (at home) 3 types of mathematical challenge and present an 

example of each one.  All the teachers' work was collected and the discussion was 

recorded in hand-written protocol. Teachers' written responses and their discourse 

during the discussion were analysed by two researchers independently. Based on this 

analysis we identified 12 categories of challenging mathematical tasks as viewed by 

teachers (see Table 1). Based on this categorization Questionnaire-2 was constructed. 

We also included in Questionnaire-2 three problems that were suggested by the 

teachers from Group A as “challenging at different levels” and “corresponding to 

different characteristics of mathematical challenge”. 

Stage 2: Forty-one teachers from Group B were presented with Questionnaire-2 and 

asked (1) to rank types of the tasks with respect to the level of their challenge from 1 

(the most challenging) to 12 (the least challenging); (2) to solve and rank the three 

chosen tasks from 1 (the most challenging) to 3 (the least challenging) with respect to 

teaching 9
th
 grade students.   

RESULTS 

Characteristics of challenging mathematical tasks  

Teachers’ definitions included various criteria for mathematical challenge. For 

example, Roni and Sohila addressed solving problems in different ways, Soha 

considered non-conventional problems, Tami clearly indicated that using 

combination of different topics in one solution is challenging. Sohila also addressed 

finding mistakes in solutions of the problems as a mathematical challenge.   

Roni:  Mathematical challenge for me is a problem that has several stages in 
solution or problem that has different solutions. The solution is not 
obvious. 

Soha:  Mathematical challenge requires  thinking at the level higher than regular. 
A challenging problem is a problem whose solution or topic is non-
standard. I think that mathematical challenge is relative. It is difficult to 
characterize a problem as challenging or not challenging without 
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considering population. The problem can be challenging for the 1st grade 
students and not challenging for the 3rd graders. The problem may be 
challenging for 'regular' people but not challenging for mathematicians. 

Tami: Mathematical challenge is a combination of a number of different 
methods and topics together. It means that solving challenging problem I 
use different mathematical principles and topics (e.g. algebra and 
geometry or analytical geometry) 

Sohila: For me mathematical challenge is (a) looking for different solutions of a 
problem or (b) looking for the mistakes in solutions. 

As mentioned earlier we identified 12 categories based on the analysis of teachers’ 

definitions of challenging mathematical tasks (see Table 1).  

Table 1: Frequency of different characteristics in Group A and ranking the 

characteristics by Group B. 
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6. A problem that requires combination 

different mathematical topics  
2  3 4 6 

2. A problem that requires logical 

reasoning  
1 2 1 11 6.15 

1. A problem that has to be solved in 

different ways 
7 2 4 5 6.44 

12. An inquiry based problem  1 4 6 7 6.59 

7. A non-conventional problem 1 6 2 9 7.66 

10. A problem that requires generalization of 

problem results    
 1 1 3 8.20 

3. Proving a new mathematics statement    3  8.29 

9. A problem that requires auxiliary 

constructions  
 1 2 2 9.90 

11. Finding mistakes in solutions  1    10.15 

8. A paradox   1 2 2  10.29 

5. A problem that requires knowledge of 

extra-curricula topics  
  1  10.56 

4. A problem with parameters      2  10.78 

 

Table 1 presents frequency of the appearance of different characteristics in the 

definitions and problems given by teachers in group A and ranking the criteria by 

Group B. Table 1 also presents distribution of the examples of challenging problems 

given by teachers in group A with respect to different characteristics. This 

characterization of the problems was performed by the teachers themselves and by 

the two researches independently and then was discussed and refined in group 
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discussion. Within the space limit of this paper we cannot consider the differences 

between the kinds of problems the teachers presented on the spot and at home. Note 

that whereas only one teacher mentioned inquiry as a characteristic of challenging 

problem, ten of forty-five problems suggested by the teachers were open inquiry 

problems (e.g., Task 3). 

Ranking the characteristics 

The teachers in group B were asked to score the criteria that arose from the analysis 

of the responses of teachers from group A. We found that teachers' views on 

mathematical challenge as followed from the teachers ranking were consistent with 

the views of teachers from group A.  The minimal average rank was given to 

combination of different topics and tools in one particular solution. Logical reasoning 

was ranked as most suitable criteria for mathematical challenge by 11 of 41 teachers. 

The three other criteria that were highly ranked by teachers from group B were 

problem solving in different ways, mathematical inquiry and non-conventional tasks. 

We were surprised by the fact that non-conventional task were scored lower than 

other abovementioned criteria. However, from teachers' discussion it became clear 

that non-conventional tasks were less popular since teachers often did not feel 'safe' 

enough to use this type of tasks in their classes.     

Examples of challenging problems 

Task 1: 

In a regular octagon all the diagonals from vertex A are 

constructed. By this construction six disjoint angles are obtained 

near the vertex A.  What can you say about these angles: 

654321 ,,,,, AAAAAA ∠∠∠∠∠∠
 

Task 2: 
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Find the product of the two numbers: 393407 ⋅    

Task 3:  

The distance between school and Tom’s home is 9 km and the distance between the 

school and Jerry's home is 7 km. What is the distance between Tom’s and Jerry's homes? 

Figure 1 

All the problems given by the teachers in group A (including Tasks 1, 2 and 3) were 

discussed by them in the whole group discussion. Before the discussion they were 

asked to solve the problems given by other teachers and evaluate the level of their 

challenge. Often, when solving, the teachers did not find problems of other teachers 

challenging at all. They claimed the problems were too easy.  However, after the 

'authors' of the problems explained why they considered the problems challenging the 

teachers accepted all of them as examples of challenging tasks.  
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As a result of the whole group discussion (in group A) the teachers developed their 

comprehension of the relativity of mathematical challenge. Similarly to 

considerations presented by Soha in her definition of mathematical challenge, 

teachers agreed that in order to evaluate mathematical challenge of a problem it 

should be considered with respect to students' age, knowledge, ability, expertise and 

creativity.  

Tami:  You cannot say whether the task is challenging if you do not know who 
the students are, what they know, where they lean and moreover who is 
the teacher that teaches them. For some students this will be a challenge, 
for other students not at all. 

Figure 1 presents three problems that were provided by the teachers in group A and 

chosen for Questionnaire-2. The reasons for this choice were the following: The three 

tasks represented different types of challenges as shown above, they belong to 

different fields of school mathematical curriculum, and were found challenging for 

the same grade level: 9
th
 grade. 

Task 1 has different solutions, requires use of different topics in one solution (i.e. 

circle and inscribed regular polygons or calculation of angles and equilateral triangles 

and trapezoid, properties of an angles bisector). This problem also requires auxiliary 

constructions. 

Task 2 is not standard task since its 'elegant' solution is based on use of reduced 

multiplication formulas. 

Task 3 is an example of an open problem that has infinite 

number of solutions that should be presented in the form of 

inequation ("something that you do not see in the 

textbook"). This is an inquiry problem whose formal 

solution is not trivial even for the teachers (see Figure 

2).Teachers agreed that this problem required logical 

consideration in the process of solution. 

9
7

2≤≤≤≤S ≤≤≤≤ 16

 

Figure 2 

The teachers in group B ranked the challenge of the tasks (from 1– the most 

challenging to 3 – the least challenging). Table 2 shows teachers’ performance in the 

three tasks and their ranking. According to the teachers’ ranking Task 3 appeared to 

be the most challenging one (1.65). The least challenging was Task 2 (2.19).  

We found clear relationship between the difficulty of the tasks for the teachers and 

their perception of the level of their challenge. Only 3 of 41 teachers gave completely 

correct answer to Task 3 whereas 38 of 41 teachers solved Task 2 correctly including 

34 teachers who used the 'elegant' solution. 

Evaluation of the challenge of the tasks by teachers in group A correlated with 

teachers' views in group B: the more challenging characteristics a task comprised in 

the eyes of the teachers’ from group A the more challenging it was ranked by the 

teachers from group B. Additionally, the most challenging task (task 3) fitted five 
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most 'popular' characteristics of challenge as ranked by teachers from group B 

whereas Task 2 fitted only two of these characteristics. 

Table 2: Teacher's solutions and challenging rank of 3 tasks (Group B) 

Task 1 Task 2 Task 3  

Answer No of 

teachers Answer No of 

teachers 
Answer No of 

teachers 

Correct 

solution  
ο5.22  20 

407⋅393= 

=(400+7)(400-7)= 

=160000-49=159951 
159951 by long 

multiplication 

34 

4 

162 ≤≤ x  3 

ο5.22 - no 

justification 
7 162 << x  11 Partly 

correct 

solution ∠1=∠6, 

∠2=∠5, ∠3=∠4 
8 

 0 
There are infinite 

number of  situation 
12 

2,16, 130  or 

There are number of 

cases 

7 

2  or 16 2 

Incorrect 

solution 
No answer 6 No answer 3 

No answer 6 

Challenge rank (from 1 the highest  to 3 the lowest): 

 2.06 2.19 1.65 

Concluding remarks 

The experiment presented in this paper is only the first stage in the study on teachers’ 

conceptions of challenging mathematics. Our study demonstrates that teachers (as a 

group) held a broad conception of mathematical challenge. During the group 

discussion they refine and verify their conceptions and attain a shared meaning. 
We were happy to see that many of the criteria teachers suggested for mathematical 

challenge had been used by Krutetskii in his study on students' mathematical abilities 

(Krutetskii, 1976).  

We found that teachers connect pedagogy and mathematics (Jaworski, 1992; 

Shulman, 1986) incorporated in the mathematical tasks: when reasoning about 

mathematical challenge the teachers were sensitive to individual differences among 

their students. This connection was also evident in their reasoning about the relativity 

of the challenge. During the discussions the teachers clearly stated that they value 

mathematical challenge and agreed that challenging mathematics is important for 

‘deepening and broadening of students’ mathematical thinking’.  

At the time of this study the teachers from Group A participated in MA program for 

mathematics teachers. We were glad to see that they used the content of the courses 

in their reasoning about challenges, since most of the courses in the program were 

challenging to them. For example, the frequency of the requirement for different 

solutions (mentioned by 7 of 9 teachers) may be explained by the fact that teachers in 
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group A were aware of the special interest of the researchers in different ways of 

problem solving (e.g., Leikin & Levav-Waynberg, accepted). Additionally, one of the 

tasks presented by the teachers as a challenging task was similar to the one used in 

the studies by Verschaffel & De Corte (e.g., Verschaffel & De Corte, 1997). This 

implementation of knowledge obtained in a different context indicates for us the 

importance of the systematic teachers education.  
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SEMIOTIC GAMES: THE ROLE OF THE TEACHER 
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Dipt. di Matematica, Univ. Torino, Italy / Liceo “Issel”, Finale Ligure, Italy 

 

The paper uses a semiotic lens to interpret the interactions between teacher and 

students, who work in small collaborative groups. This approach allows focussing 

some important strategies, called semiotic games, used by the teacher to support 

students mathematics learning. The semiotic games are discussed within a 

Vygotskyan frame.  

INTRODUCTION 

The role of the teacher in promoting learning processes is crucial and has been 

analysed according to different frameworks. For example the Theory of Didactic 

Situations, originated by G. Brousseau (1997), defines the teacher as a didactical 

engineer. (S)he designs the situations and organises the milieu according to the piece 

of mathematics to be taught and to the features of the students (mesogenesis: see 

Sensevy et al., 2005); (s)he divides the activity between the teacher and the students, 

according to their potentialities (topogenesis); moreover the classroom interactions 

are pictured according to the didactic contract, that is the system of reciprocal 

explicit and implicit expectations between the teacher and the students as regards 

mathematical knowledge. Brown and McIntyre (1993) underline that the teacher 

works with students in classrooms and designs activity for classrooms using her/his 

craft knowledge, namely a knowledge largely rooted in the practice of teaching. 

Siemon & al. (2004, p. 193) point out “the need for a deeper understanding of the 

ways in which teachers contribute to the shaping of classroom cultures”. Other 

researchers, who work according to Vygotsky’s conceptualization of ZPD (Vygotsky, 

1978, p. 84), underline that teaching consists in a process of enabling students’ 

potential achievements. The teacher must provide the suitable pedagogical mediation 

for students’ appropriation of scientific concepts (Schmittau, 2003). Within such an 

approach, some researchers (e.g. Bartolini & Mariotti, to appear) picture the teacher 

as a semiotic mediator, who promotes the evolution of signs in the classroom from 

the personal senses that the students give to them towards the scientific shared sense. 

In this case teaching is generally conceived as a system of actions that promote 

suitable processes of internalisation.  

Our approach is in the Vygotskian stream: the teacher is seen as a semiotic mediator, 

who promotes students’ internalisation processes through signs. But some changes 

are proposed with respect to the classical Vygotskyan approach. First, we extend the 

notion of sign to all semiotic resources used in the teaching activities: words (in oral 

or in written form); extra-linguistic modes of expression (gestures, glances, …); 

different types of inscriptions (drawings, sketches, graphs, ...); different instruments 

(from the pencil to the most sophisticated ICT devices). Second, we consider the 

embodied and multimodal ways in which such resources are produced, developed and 
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used. Within such a framework, we utilise a wider semiotic lens (the semiotic bundle, 

sketched below) to focus the interactions between teacher and students. Our semiotic 

lens allows framing and describing an important semiotic phenomenon, which we 

call semiotic games. The semiotic games practise is rooted in the craft knowledge of 

the teacher, and most of times is pursued unconsciously by her/him. Once explicit, it 

can be used to properly design the teacher’s intervention strategies in the classroom 

for supporting students’ internalisation processes. 

In the following three sections we discuss: (i) the multimodal paradigm and the 

semiotic tools suitable for describing mathematics learning processes; (ii) an 

emblematic example, through which the notion of semiotic games is introduced (the 

main result of the paper); (iii) some didactical consequences. 

FROM THE MULTIMODALITY OF LEARNING PROCESSES TO THE 

SEMIOTIC BUNDLE 

The notion of multimodality has evolved within the paradigm of embodiment, which 

has been developed in these last years (Wilson, 2002). Embodiment is a movement 

afoot in cognitive science that grants the body a central role in shaping the mind. It 

concerns different disciplines, e.g. cognitive science and neuroscience, interested in 

how the body is involved in thinking and learning. The new stance emphasizes 

sensory and motor functions, as well as their importance for successful interaction 

with the environment. A major consequence is that the boundaries among perception, 

action and cognition become porous (Seitz, 2000). Concepts are so analysed not on 

the basis of “formal abstract models, totally unrelated to the life of the body, and of 

the brain regions governing the body’s functioning in the world” (Gallese & Lakoff, 

2005, p. 455), but considering the multimodality of our cognitive performances. 

Verbal language itself (e.g. metaphorical productions) is part of these cognitive 

multimodal activities (ibid.).   

Semiotics is a powerful tool for observing the didactical processes. However, the 

classical semiotic approaches put strong limitations upon the structure of the semiotic 

systems they consider. These result too narrow for interpreting the didactical 

phenomena in the classroom. This happens for two reasons: 

(i) Students and teachers use a variety of semiotic resources in the classroom: speech, 

gestures, glances, inscriptions and extra-linguistic modes of expression. But some of 

them do not satisfy the requirements of the classical definitions for semiotic systems 

as discussed in the literature (e.g. in Duval, 2006 or in Arzarello, 2006). 

(ii) The way in which such different resources are activated is multimodal. It is 

necessary to carefully study the relationships within and among those, which are 

active at the same moment, and their dynamic developing in time.  

Hence we need a broader theoretical tool for analysing the semiotic resources in the 

classroom. This tool is the Semiotic Bundle, introduced in Arzarello (2006). It 

encompasses all the classical semiotic systems as particular cases. Hence, it is 

coherent with the classical semiotic analysis, but broaden it and allows getting new 
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results and framing the old ones within a unitary wider picture. Roughly speaking 

(for a full description see Arzarello, 2006), while the classical semiotic systems 

concern very structured systems, whose rules of sign production and manipulation are 

very precise algorithms (from the oral and written language to the algebraic or 

Cartesian register) the semiotic bundle includes all signs produced by actions that 

have an intentional character (e.g. speaking, writing, drawing, gesticulating, handling 

an artefact, etc.) and whose modes of production and transformation (e.g. for 

gesturing or drawing) may encompass also approaches less deterministic and more 

idiosyncratic than algorithms. A semiotic bundle is a dynamic structure, where such 

different resources coexist and develop with their mutual relationships, according to 

the multimodal paradigm. Hence it allows considering a variety of resources, which 

span from the compositional systems, usually studied in traditional semiotics (e.g. 

formal languages) to the open sets of signs (e.g. sketches, drawings, gestures). An 

example of semiotic bundle is represented by the unity speech-gesture. It has been 

written that “gesture and language are one system” (McNeill, 1992, p.2): from our 

point of view, gesture and language are two components of the same semiotic bundle. 

Research on gestures has already shown important relationships between them (e.g. 

match Vs. mismatch, see Goldin-Meadow, 2003). 

We have used the semiotic bundle to analyse different classroom stories (Arzarello et 

al., 2006; Arzarello, 2006). It has revealed particularly useful for studying several 

didactic phenomena that happen in the classroom, especially some interactions 

between teacher and students, who work in small groups. We have called them the 

semiotic games. They consist in strategies of intervention in the classroom that many 

times the teacher activates unconsciously; once (s)he becomes aware of such 

strategies, s(he) can use them in a more scientific way for improving her/his students 

achievements. We shall introduce the semiotic games through an emblematic 

example in the following section; further discussion is found in Sabena (2007) and 

Arzarello & Robutti (to appear). We have observed such games in different classes 

and with students of different ages (from elementary to secondary school).  

THE SEMIOTIC GAMES THROUGH AN EMBLEMATIC EXAMPLE 

The activity we shall comment concerns students attending the third year of 

secondary school (11
th 

grade; 16-17 years old). They attend a scientific course with 5 

classes of mathematics per week, including the use of computers with mathematical 

software. These students are early introduced to the fundamental concepts of 

Calculus since the beginning of high school (9th grade); they have the habit of using 

different types of software (Excel, Derive, Cabri_Géomètre, TI-Interactive, Graphic 

Calculus: see Arzarello et al. 2006) to represent functions, both using their Cartesian 

graphs and their algebraic representations. Students are familiar with problem solving 

activities, as well as with interactions in small groups. The methodology of 

mathematical discussion is aimed at favouring the social interaction and the 

construction of a shared knowledge. 
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We will comment some excerpts from the activity of a group of three students: C, G, 

S. They are clever pupils, who participate to classroom activities with interest and 

active involvement. In the episodes we present, there is also the teacher (T), whose 

role is crucial and will be carefully analysed: he is not always with these students, but 

passes from one group to the other (the class has been divided into 6 small groups of 

3-4 students each). The excerpts illustrate what is happening after the group has done 

some exploring activities on one PC, where Graphic Calculus produces the graphs of 

Figure 1. Their task is to explain the reasons why the slope of the ‘quasi-tangent’ (see 

the box with Fig. 1) is changing in that way. The students know the concepts of 

increasing/decreasing functions but they do not yet know the formal notion of 

derivatives. Moreover they are able in using Graphic Calculus and know that the 

‘quasi-tangent’ is not the real tangent, because of discrete approximations. 

  

 

          Figure 1 

 

Typically their first explanations are confuse (see Episode A) and expressed in a 

semiotic bundle, where the speech is not the fundamental part. In fact, the main 

component of the semiotic bundle consists in the multimodal use of different 

resources, especially gestures, to figure out what happens on the screen. Figures 2 

show how C captures and embodies the inscriptions in the screen through his gestures. 

More precisely, the evolution of the gesture from Fig. 2a to Fig. 2e illustrates a 

sprouting concept not completely formulated in words. It could be phrased so: “the 

quasi-tangent is joining pairs of points whose x-coordinates are equidistant, but it is 

not the same for the corresponding y-coordinates: the farther they are the steepest is 

the quasi-tangent”. These ideas are jointly expressed through gestures and words. In 

fact, C’s words refer only to the ‘quasi-tangent’ line and express the fact that the 

interval ∆x is always the same; the remaining part is expressed through gestures. 

Only later the concept will be expressed verbally. We call the gesture in Fig. 2b the 

basic sign (the thumb and the index getting near each other): in fact it triggers a 

semiotic genesis of signs within the semiotic bundle that is being shared among the 

students (and the teacher, as we shall see). 

In Episode A the student C is interacting with the teacher, whose role will be 

analysed later. At the moment we limit ourselves to focus on the specific content of 

his interventions in this episode. In #1 he is echoing C’s words (#0) using a more 

The two graphs represent: the function f :x  → 0.5x
3
-5x

2
 + 3; the 

slope of the ‘quasi-tangent’ to the function f [i.e. the secant 

through a moving point (x, f(x)) and the point ((x+δ, f(x+ δ)), for 

very small δ]. Graphic Calculus allows to see the genesis of the 

two graphs through a point P, which moves and traces the graph 

of the function f. In the same time one can see the 

corresponding moving ‘quasi-tangent’ and the graph of its 

slope, which is traced in real time while P is moving. 
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technical word (delta-x), namely he gives the scientific name to the concept 

expressed by C and C shows that he understands what the teacher is saying (#2). C’s 

attention is concentrated on the relationships between the ∆x and the corresponding 

∆y variations. Gesture and speech both contribute to express the covariation between 

∆x and ∆y, underlining the case when the variations of ∆y become bigger 

corresponding to fixed values of ∆x. Figures 2 and the corresponding speech illustrate 

the multimodality of C’s actions: the student is speaking and simultaneously 

gesturing. C grasps the relationship of covariance with some difficulty, as the 

misunderstanding in sentences from #5 to #9 shows. Here the intervention of the 

Teacher (#6) supports C in the stream of his reasoning, which can continue and 

culminates in sentence #11, where the gesture (see the overturned arm in Fig. 2e) 

gives evidence that C realised that the covariance concerns also negative slopes (but 

he does not use such words). 

 

    Fig. 2a (sentence #2)      Fig. 2b (sent. #2)                  Fig2c (sent. #3) 

 

        Fig. 2d (sent. #5)             Fig. 2e (sent. #11)             Fig. 2f (sent. #21) 

Episode A. (duration: 9 seconds; about one hour after the beginning of the activity). 

0 C: The X-interval is the same …  

1 T: The X-interval is the same; delta-x [∆x] is fixed. 

2 C: Delta…eh, indeed, however…however there are some points where… to 

explain it … one can say that this straight line must join two points on the 

Y axis, which are farther each other. (Figs. 2a, 2b) 

3 C: Hence it is steeper towards...(Fig. 2c) 

4 G: Yes! 

5 C: Let us say towards this side. When, here, …when …however it must join 

two points, which are farther, that is there is less...less distance. (Fig. 2d)  

6 T: More or less far? 

7 C: Less...less far [he corrects what he said in #5].  

8 T: Ehh? 
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  9 C: On the Y axis I am saying! 

10 T: Yes! 

11 C: It slants softly from this side (Fig. 2e). 

After a few seconds there is an important interaction among the teacher and the 

students (Episode B), which is emblematic of the strategy used by the teacher to work 

with students for promoting and facilitating their mathematics learning. 

Episode B. (duration: 34 seconds; a few seconds after Episode A). 

18 T: Hence let us say, in this moment if I understood properly, with a fixed 

delta-x, which is a constant,… (Fig. 2f). 

19 C:  Yes! 

20 S:  Yes! 

21 T: It… is joining some points with delta-y, which are near (Fig. 2f). 

22 C: In fact, now they [the points on the graph] are more and more…  

23 T: It is decreasing, is it so? [with reference to ∆y] 
24 S: Yes! 

25 C: …they [their ordinates] are less and less far. In fact, the slope... I do not 

know how to say it,…...the slope is going towards zero degrees. 

26 T: Uh, uh. 

27 C: Let us say so… 

28 S: Ok, at a certain point here delta-y over delta-x reaches here…  

29 C: …the points are less and less far.  

30 T: Sure! 

31 S: …a point, which is zero. 
[sentences of C(#27, #29), of S(#28, #31) and of T (#30) are intertwined each other] 

This episode shows an important aspect of the teacher’s role: his interventions are 

crucial to foster the positive development of the situation. This appears both in his 

gestures and in his speech. In fact he summarises the fundamental facts that the 

students have already pointed out: the covariance between ∆x and ∆y and the trend of 

this relationship nearby the stationary point (we skipped this part). To do so, he 

exploits the expressive power of the semiotic bundle used by C and S. In fact he uses 

twice the basic sign: in #18 to underline the fixed ∆x and in #21 to refer to the 

corresponding ∆y and to its smallness nearby the local maximum x (non redundant 

gestures: see Kita, 2000). In the second part of the episode (from #22 on) we see the 

immediate consequence of the strategy used by the teacher. C has understood the 

relationship between the covariance and the phenomena seen on the screen nearby the 

stationary point. But once more he is (#25) unable to express the concept through 

speech. On the contrary, S uses the words previously introduced by the teacher (#18, 

#21) and converts what C was expressing in a multimodal way through gestures and 

(metaphoric) speech into a fresh semiotic register. His words in fact are an oral form 

of the symbolic language of mathematics: the semiotic bundle now contains the 

official language of Calculus. His sentences #28, #31 represent this formula. The 

episode illustrates what we call semiotic games of the teacher. Typically, the teacher 

uses the multimodality of the semiotic bundle produced by the students to develop his 
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semiotic mediation. Let us consider #18 and #21 and Fig. 2f. The teacher mimics one 

of the signs produced in that moment by the students (the basic sign) but 

simultaneously he uses different words: precisely, while the students use an imprecise 

verbal explanation of the mathematical situation, he introduces precise words to 

describe it (#18, #21, #23) or to confirm the words of S (#30). Namely, the teacher 

uses one of the shared resources (gestures) to enter in a consonant communicative 

attitude with his students and another one (speech) to push them towards the 

scientific meaning of what they are considering. This strategy is developed when the 

non verbal resources utilised by the students reveal to the teacher that they are in 

ZPD. Typically, the students explain a new mathematical situation producing 

simultaneously gestures and speech (or other signs) within a semiotic bundle: their 

explanation through gestures seems promising but their words are very imprecise or 

wrong and the teacher mimics the former but pushes the latter towards the right form.  

CONCLUSIONS 

Semiotic games are typical communication strategies among subjects, who share the 

same semiotic resources in a specific situation. The teacher uses the semiotic bundle 

both as a tool to diagnose the ZPD of his students and as a shared store of semiotic 

resources. Through them he can develop his semiotic mediation, which pushes their 

knowledge towards the scientific one. Roughly speaking, semiotic games seem good 

for focussing further how “the signs act as an instrument of psychological activity in 

a manner analogous to the role of a tool in labour” (Vygotsky, 1978, p. 52) and how 

the teacher can promote their production and internalisation. The space does not 

allow to give more details (they are in Arzarello & Robutti, to appear) and we limit 

ourselves to sketchily draw some didactical consequences. A first point is that 

students are exposed in classrooms to cultural and institutional signs that they do not 

control so much. A second point is that learning consists in students’ personal 

appropriation of the signs meaning, fostered by strong social interactions, under the 

coaching of the teacher. As a consequence, their gestures within the semiotic bundle 

(included their relationships with the other signs alive in the bundle) become a 

powerful mediating tool between signs and thought. From a functional point of view, 

gestures can act as “personal signs”; while the semiotic game of the teacher starts 

from them to support the transition to their scientific meaning. Semiotic games 

constitute an important step in the process of appropriation of the culturally shared 

meaning of signs, that is they are an important step in learning. They give the 

students the opportunity of entering in resonance with teacher’s language and through 

it with the institutional knowledge. However, in order that such opportunities can be 

concretely accomplished, the teacher must be aware of the role that multimodality 

and semiotic games can play in communicating and in productive thinking. 

Awareness is necessary for reproducing the conditions that foster positive didactic 

experiences and for adapting the intervention techniques to the specific didactic 

activity. E.g. in this report we have considered teacher’s interventions in small 

collaborative groups. In a whole class discussion, the typology of semiotic games to 
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develop is likely to change, depending on the relationships within and among the 

different components of the semiotic bundles produced and shared in the classroom. 

This issue suggests new researches on the role of the teacher in the classroom, where 

the semiotic lens can once more constitute a crucial investigating tool.  
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EXAMPLES, A MISSING LINK 

AMIR.H.ASGHARI 

SHAHID BEHESHTI UNIVERSITY, Iran 

The purpose of this paper is to draw attention to a missing link regarding the 

problems involved in ‘generating’ an example of a defined concept. Through 

examining students’ conceptions while generating (an example), it is argued that 

these conceptions might be separately linked to a hidden activity: checking (the status 

of something for being an example). Finally, the missing link between students’ 

conceptions while generating and students’ conceptions while checking will be 

discussed. 

INTRODUCTION 

Using examples is so blended with our standard practice of teaching mathematics that 

what is written about the importance of using examples seems to be an expression of 

triviality.  However, to the very same extent that making use of examples seems trivial 

and mundane, choosing a suitable collection of examples is problematic. It seems that 

any choice of examples bears an inherent asymmetric aspect, i.e. while for the teacher 

they are examples of certain relevant generalisations transferable to other examples to 

be met, for the students they could remain irrelevant to the target generalization 

(Mason and Pimm, 1984). When the intended generalization is a concept, usually 

accompanied by a definition, this divorce of examples from what they exemplify is 

mainly shown in the literature by examining how students tackle checking problems, 

i.e. checking the status of something for being an example (Tall and Vinner, 1981).     

Contrary to the widespread standard teaching practice in which new concepts are 

introduced by and through teacher-prepared examples accompanied by his or her 

commentaries on what is worth considering in the prepared examples, there are a few 

and still experimental non-standard settings in which students are encouraged from the 

outset to generate their own examples. These works mainly arise from the perspective 

that “ mathematics is a constructive activity and is most richly learnt when learners are 

actively constructing objects, relations, questions, problems and meanings”  (Watson and 

Mason, 2005, p. ix).  

The previous two distinct paragraphs, one concerning checking and the other 

concerning generating, metaphorically stand for the current view of the literature on 

these two processes, mainly as two distinct processes (for the examples of this 

separation see Dahlberg and Housman, 1997, or, Hazzan and Zazkis, 1997). Calling 

into question this widespread separation between checking and generating is the main 

theme of the present paper. It will be argued that as far as generating is concerned, its 

separation from checking lies in the learner’s conception (of the underlying concepts) 

and the learner’s generating approach rather than the designer’s (researcher or teacher) 

will.  
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BACKGROUND 

This paper is based on a wider study aimed at investigating students’ understanding of 

equivalence relations (Asghari and Tall, 2005). The following task (The Mad Dictator 

Task) was originally designed while having the standard definition of equivalence 

relations in mind. The task was tried out on twenty students with varied background 

experience, none of them had any formal previous experience of equivalence relations 

and related concepts. In a one-to-one interview situation each student was introduced 

to the definition of a ‘visiting law’ (see below).Then each student was asked to give an 

example of a visiting law on the prepared grids (see below).  

The Mad Dictator Task 

A country has ten cities. A mad dictator of the country has decided that he wants to 

introduce a strict law about visiting other people. He calls this 'the visiting law'. 

A visiting-city of the city, which you are in, is: A city where you are allowed to visit other 

people. 

A visiting law must obey two conditions to satisfy the mad dictator: 

    1. When you are in a particular city, you are allowed to visit other people in that city. 

   2. For each pair of cities, either their visiting-cities are identical or they mustn’t have any 

visiting-cities in common. 

The dictator asks different officials to come up with valid visiting laws, which obey both of 

these rules. In order to allow the dictator to compare the different laws, the officials are 

asked to represent their laws on a grid such as the one below. 

 

 

 

 

                                        You are here 

In the previous paper mentioned above, most of the data came from the students’ 

involvement in generating an example. However, in that paper all the tasks involved, 

including generating, were in the background while students’ conceptions of the 

concepts of interest were in the fore. Now, in this paper, I turn my attention around and 

start scrutinizing the tasks.  

As far as generating and checking are concerned there are a few methodological points 

worthy of consideration: 

First, in our earlier paper mentioned above, according to a methodological choice, the 

focus of the study was on the outcomes of learning (learned) rather than on the learners. 

In the present paper, I give more weight to the individuals’ voices. However, again it is 

not the individuals per se that matter; the focus will be on what they reveal about the 

possible interconnections between generating, checking and the students’ conceptions. 
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Second, in this study generating an example basically means coming up with certain 

points on the grid where there are incredible blind choices (two to the power of 

hundred different ways of putting the points on the grid), and where only a tiny portion 

of all the possible choices constitutes the potential example space (something about 

one over two to the power of eighty). However, the number of objects (examples) in 

this tiny portion is still big enough (it is exactly 115975) to surprise the participants by 

the potential possibility of having an example that is open to them.  

Third, in the course of the interview, after generating the first examples each 

interviewee was asked to generate another one. However, the number of generated 

examples was mainly determined by the interviewee’s will rather than any 

predetermined plan. As a result, the interviewees’ works range from generating only 

two examples to suggesting a way to generate an example, though they were never 

asked to explain a general way to generate an example.  

Fourth, one of the most subtle points of each interview was to make a decision about 

checking point, i.e. whether the interviewer should ask the interviewee to check 

whether his or her self-generated figure is an example or not. This decision was 

entirely contingent on the interviewee’s way of generating his or her example. As a 

matter of fact, to the same extent that the interviewer could not be aware of all possible 

conceptions in advance, he could not examine all possible contingencies beforehand. 

As a general rule, if the interviewer sensed that the way of generating an example 

reflects a new conception (at least new from the interviewer’s point of view) he asked 

for checking, otherwise that decision was left to the interviewee.  

Indeed, the fourth point underlines the missing link stressing in this paper. For a long 

time, I was not aware of the hidden existence of checking while generating. As a result, 

generating an example came to a halt as soon as student's generated figure seemed to 

be an example. However, students' spontaneous attempts to justify their generated 

figure brought to the fore some complex interrelationships between generating and 

checking. The next section exemplifies some of these complexities. 

Exemplification and Conception 

As mentioned before, twenty students with varied background experiences participated 

in this study. However, in the present paper we only follow two students (Dick and 

Hess) across two different tasks, namely generating and checking. This is not because 

these two students and/or their work are typical. They just exemplify how a certain 

conception may carry different weights in different tasks.   

I shall start with Dick (at the time, a first year undergraduate law student) when he was 

generating his first example. 

Dick: this question's been specially designed to confuse. 

After a few minutes puzzling over the task and putting some points on the grid, he 

realized how to represent the first condition: 
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Dick: that line (diagonal), that line is the first condition, because you allow to visit people 
in that city, you see. 

Now, his grid looks like the figure on the right:   

Dick: so let’s check this works…um, I think you can’t 

do very complicated system, because otherwise a pair  

of cities certainly contradict with each other,  

I am not sure it works or not, I think I put that wrong, um. 

While generating and checking, Dick's focus is on a pair of cities. In other words, his 

work manifests a matching conception in which the focus is on a pair of elements. 

Having failed in his first attempt, he turned his attention to a part of the grid, generated 

the following figure on the left, checked it matching-wise and extended it to the 

following figure on the right: 

                            Dick: so if you do a sort of cross,  

I think that satisfy the second condition,  

um, I also think that would happen, because  

you get line where you’ve already filled the  

centre diagonal which I did before, which  

means it satisfies the first condition. 

Obviously, his figure satisfies the first condition, but, what about the second condition?   

Consider that the processes that he made use of was not predictive, i.e. making use of it 

did not guarantee that the product would be an example. As a result, checking the status 

of the product is inevitable. For an informed person, Dick's first example is indeed an 

example because it consists of two disjoint groups of mutually related elements (here, 

cities). However, it is not something that Dick sees in his figure. Yet, confined himself 

to matching, He checked it by taking a random pair:  

Dick: yah, so that’s what I did, so every one of these dots means you can visit that city, … 
and if you take any random pair, I go two and seven, none of them can visit same cities, 
um, …, two can visit one, but seven can’t visit one or two, so that’s different, I think that 
satisfies all conditions. 

But, his matching conception hindered him to generate another example (at the 

interviewer's request). 

Dick: um, well, you have to have a regular pattern to obey the second condition; because 
otherwise, um, this is regular, if you, if I want to suppose, I can’t hit how it worked out, 
um, … for every pair, there’s so many pairs, um, I can’t work out, there’s so many pairs 
that we aware if to work out another system, and I can’t think another way to do it, um, I 
stick to this assumption, it has to be a regular system, because otherwise at least one of the 
pairs conflict, um…I can’t think another way…it is the only example I can think of. 

On the interviewer's insistence, he tries again. Yet, within a matching conception, his 

focus is mainly on the medium (here, the grid) in which he is about to present another 

example.  
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Dick: I just try a pair, four and seven having non  

similar, um; now, I do five and six …  

they have to cross over with the line in the middle,  

so I do seven, and that should…go upwards with six…  

I think this might also work as a system. 

Again, Dick needs to check if his system works. This time, for a moment he exhibits a 

different conception, i.e. grouping.  

Dick: um, I just tried a random example and it works (ha, ha), um… I just do an example 
of having the first five cities all be able to visit each other, then the second five cities all 
be able to visit each other… once again it’s a regular system. 

However, Dick's grouping experience is not reflected in his next generating attempt. 

 Dick: um, once again I am stuck for other way to do it, when I did that one (first 
example); I thought there won’t be other ways to do it, now I think of another one which 
works…for this one (the previous example), I worked from the top to the bottom…, now 
I am considering filling from left to right to the middle spots… 

Soon afterwards he realised that “that would be resulted in the same sort as the second 

example”! But, still focusing on the figural features, he continued as follows: 

Dick: if you do a system where you fill in blocks of dashes… 

something possibly diagonal lines, but I am not sure that system work,  

I must fill in to see it works…so that each circle, each visiting-city is  

not next to another visiting-city, um, so that, like that (laughing), …  

take a random pair, say three and six, not same, not same, not same… 

I think this does work actually (laughing), I just took it and it worked! 

Again it is a vague sense of “a regular system” that leads Dick to his third example. As 

a result, checking is inevitable. When checking, it is only a matching procedure that 

connects his three examples together. When generating, not only his conception 

(matching) is hardly noticeable while generating his last example, but also it somehow 

hindered him to make it! 

Dick: it seems that I shouldn’t thought about it (the third example) originally because the 
second rule is that they must have identical or they mustn’t have any in common. 

Consider the dual role of the matching conception in generating and checking. It is also 

worth stressing that it is Dick’s approach, rather than matching conception per se, 

which makes checking inevitable. Hess’ experience shows this point.  

Hess (at the time, a middle school student) manifested multiple ways of experiencing 

the situation. After generating the diagonal as his first example, he thought that “it is 

impossible to have another example” because if “we add another point, they would have a 

different point, so they never would be identical”. Soon afterwards, the same conception 

(matching)–once hindered him to generate an example–helped him to generate a 

collection of examples: 
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Hess:   Now, if for every, for example, this point, one, if I put everywhere, for example, I 
put eight, I must put for eight, one; eight and one are completely the same and others are 
completely different…so we have infinite cases; no, it is not infinite, but it is a lot… 

   for 3, I put 5 and for 5 I put 3. 

    Interviewer: and still have you got the  

    previous points? 

Hess: it makes no difference…  

10, I put 9, also 9, I put 10. 

 

Now, he is looking for something more general, certain “property that all of them have”: 

Hess: In general, any two symmetric points that we choose we have 
one (example) about this (the diagonal). 

Unlike Dick, Hess envisages what an example might look like. However, like Dick, he 

only matches together two elements (here, two points), ignoring the possible 

connections that each one of these two elements might have with the other elements. 

As a result, some non-examples are counted as examples. However, in action, he chose 

his new pairs somehow keeping them distinct from the old ones. In action or envisaged, 

in Hess’ generating approach, checking is embedded in from the outset, yet within a 

matching conception.  

Later on, Hess generated a non-example symmetric figure. To do so, he needed to give 

weight to an element, and then, its likely relations with more than one element. 

Hess: if 10 has something, that one has 10 too; If 10 has 4, 4 has 10 too, then I must prove 
that 4 and 10 are equal…if 10 has 5, no, it was rejected... 10 and 4 no longer are equal. 

His attempt to provide a non-example symmetric figure plants the seeds of a group- 

conception reflected in his next generating attempt. Let us enter his work from the 

middle where he expressed what he has got “as clear as possible and very nicely”. 

He has already generated the following example on the left: 

Hess:   My hypothesis is that this one has the conditions of the problem, 
well, it has the conditions, I suppose I want to make a new condition (a new 
example) from the previous condition; suppose I choose another point 
somewhere, I add 4 and 7. (He continues) now, seven is a member of four. 
Then I am working on the seventh column, because seven had itself I 
determine all the other points but seven; (those are) nine, six and four. (He 
continues) then in each of the others, I determine seven, because it has just 
been added.  
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Hess sees no point to check his newly generated figure. He even does not see his 

example separated from the process leading to it.  

Interviewer: How you know that this figure is an example? 

Hess: I don’t want to show it is an example, we suppose it is an example, then I add, and 
I prove when it is added (the conditions) are satisfied again. 

Interviewer: the question is here, you want to give it to the dictator, and say it is the way 
that people can visit each other; the dictator look at it and say whether you have satisfied 
the laws. He doesn’t want to change it; he saves your paper. You are a dictator; do you 
accept this one without any change? 

Hess’ generating attempt manifested a group of pair-wise related elements. To check 

his figure (on the interviewer’s insistence), he turns back to matching for a moment 

before experiencing a group with a focal element related to all the other elements of the 

group:  

Hess: each two we consider, either they are alike or they are different…Yes. I prove it 
like this…we investigate for each column, those that are equal to it, those that must be 
equal to it, are they equal to it, or not? 

As it can be seen, one conception is reflected when generating and another conception 

when checking. Reconciling these conceptions means reconciling generating and 

checking.  

Conclusion 

The fragmented experiences described in this paper suggest something in line with 

what Marton and Booth call the path of learning: “that learning proceeds from a vague 

undifferentiated whole to a differentiated and integrated structure of ordered parts...the more 

that this principle applies in the individual case, the more successful is the learning that 

occurs” (Marton and Booth, 1997, p.138). 

However, it does not mean that the aspects that have been differentiated and integrated 

when handling a certain task are also being carried to another task. They are 

usage-specific. In the case of our interest, this means there are certain interconnections 

between what a student conceptualizes and how he or she generates an example. In the 

same vein, there are certain interconnections between what he or she conceptualizes 

and how he or she checks the status of something for being an example. This suggests 

the following schematic figure:  

 

 

 

What is experience on the left figure is not necessarily the same as what is experienced 

on the right figure. They vary in certain aspects; altogether manifest the variation in the 

students’ experiences of the concept involved. Reconciling different aspects of this 

diversity may result in reconciling generating and checking, and consequently there 

would be no need for checking after generating. However, this does not mean that there 

Generating 

How What 

Checking 

What  How 
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would be no need for checking activities. Indeed, we need them alongside generating 

activities, since it is only in the course of tackling different tasks that different aspects 

of a concept may be differentiated and integrated. It is the way that students may find 

the missing links between generating and checking.  
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SCAFFOLDING REVISITED: 

FROM TOOL FOR RESULT TO TOOL-AND-RESULT 

Mike Askew 

King's College London & City College, New York 

 

The metaphor of ‘scaffolding’ is popular in mathematics education, particularly in 

accounts purporting to examine the mediated nature of learning. Drawing on 

Holtzman and Newman’s interpretation of Vygotsky I argue that scaffolding rests on a 

dualistic view that separates the knower from the known. In line with their work, I 

being to explore what an alternative metaphor – development through performance (in 

the theatrical sense) might mean for mathematics education . 

INTRODUCTION 

Years ago, my colleagues, Joan Bliss and Sheila Macrae, and I conducted a study into 

the notion of ‘scaffolding’ (Bruner 1985) in primary (elementary) school mathematics 

and science. At the time we had difficulty finding any evidence of scaffolding in 

practice! What we observed in lessons could just as easily be categorized as 

‘explaining’ or ‘showing’. Scaffolding, in the sense of providing a support for the 

learner, a support that could be removed to leave the structure of learning to stand on its 

own, was elusive (Bliss, Askew & Macrae, 1996).  

At the time this elusiveness seemed to be a result of two things. Firstly the nature of 

what was to be learnt. Many of the examples in relevant literature (for example, Rogoff 

(1990), Lave and Wenger (1991)) attend to learning that has clear, concrete outcomes. 

Becoming tailors or weavers means that the objects of the practice – a jacket or a 

basket– are apparent to the learner: the apprentice ‘knows’ in advance of being able to 

do it, what it is that is being produced. In contrast, most (if not all) of mathematics is 

not ‘known’ until the learning is done. Young children have no understanding of, say, 

multiplication, in advance of coming to learn about multiplication: the ‘object’ of the 

practice only become apparent after the learning has taken place. (This is not to suggest 

that learners do not have informal knowledge that might form the basis of an 

understanding of multiplication, only that such informal knowledge is different and 

distinct from formal knowledge of multiplication.) 

Secondly, examples of scaffolding that did seem convincing focused on schooling 

situations that are close to apprenticeship models (Lave and Wenger, ibid.) in that the 

teacher-learner interaction is mainly one-to–one. For example, Clay (1990) provides a 

strong Vygotskian account of “Reading Recovery”: a programme based on individual 

instruction.  

This led me to turn away from the Vygotskian perspectives – all very nice in theory, 

but did they have much to offer the harried teacher of 30 or more students? Recently 

I’ve returned to consider aspects of the work of Vygotsky, particularly as interpreted 
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by the work of Lois Holzman and Fred Newman. They argue, amongst other things, to 

attend more to Vygotsky’s ideas of tool-and-result, and the argument that this leads to a 

‘performatory’ (in the theatrical sense) approach to development. 

TOOL FOR RESULT OR TOOL-AND-RESULT? 

Central to the argument is Vygotsky’s observation of the paradox at the heart of the 

psychology, in that psychology creates the very objects that it investigates. 

The search for method becomes one of the most important paradoxes of the entire 

enterprise of understanding the uniquely human forms of psychological activity. In this 

case, the method is simultaneously prerequisite and product, the tool and the result of the 

study (Vygotsky, 1978, p. 65) 

Vygotsky thus challenges the view that the method of inquiry in psychology is separate 

from the results of that inquiry, the traditional ‘tool and result’ position (Newman and 

Holzman, 1993). Instead 

As “simultaneously tool-and-result”, method is practiced, not applied. Knowledge is not 

separate from the activity of practicing method; it is not “out there” waiting to be 

discovered through the use of an already made tool. … Practicing method creates the 

object of knowledge simultaneously with creating the tool by which that knowledge might 

be known. Tool-and-result come into existence together; their relationship is one of 

dialectical unity, rather than instrumental duality. (Holtzman, 1997, p. 52, original 

emphasis) 

While Holtzman and Newman, following on from Vygotsky, challenge the view of 

psychology as a science akin to physical science, the same challenge can be applied to 

mathematics education. Models of teaching and learning based on ‘mediating means’ 

(Cole 1996) or scaffolding are largely predicated on a ‘tool for result’ perspective 

rather than a ‘tool-and-result’ one. 

Let me illustrate this with an example. In workshops I often present teachers with 

Figure 1 and ask them what fraction it represents. Most say 2/5, a few 3/5 and fewer 

still suggest that it can be either. I then ask them to discuss in small groups how 1 2/3, 1 

½, 2/3, or 2 ½ can all be acceptable answers to the question ‘what fraction’.  

 

 

 

Figure 1 

Initially there are puzzled looks and silence. Talk starts and gradually there are 

murmurs (or even cries!) of ‘oh, I get it’, or ‘now I see it’. Back as a whole group, 

various ‘seeings’ are offered, metaphors provided (‘Suppose the shaded is the amount 

of chocolate I have, and the unshaded the amount that you have, how many times 

bigger is your piece’), diagrams jotted down, and collectively we arrive at the point 

where most participants agree that they can ‘see’ the different fractions.  
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Looked at through the analytical lens of mediated (scaffolded) learning, and the 

mediation triangle (Figure 2, after Cole, ibid.) the ‘subject’ is the individual teacher 

and the ‘object’ the various ‘readings’ of the diagram. The mediated means are the talk, 

the metaphors, the ‘jottings’ that the teachers make in re-presenting the image for 

themselves. Implicit in such an account is a separation of the means and end, of the tool 

and result. The talk, metaphors, diagrams are separate from the object, the ‘it’ of the 

end result being the different ‘readings’, just as the scaffold that supports a building as 

it is put up can be removed to leave the building ‘free-standing’.  

mediating means 

 

 

 

 

subject      object 

Figure 2 

I want to question this separation of tool and result, by examining the nature of the 

outcome of this ‘lesson’ – what is the ‘basket’ that these teachers have ‘woven’?  

Where, exactly, do the ‘readings’ that emerge exist? The 2/5s, 2/3s and so forth, cannot 

be ‘there’ in the diagram itself (otherwise they would be immediately apparent). They 

cannot be solely ‘in’ the subjects’ heads waiting to be brought out. They cannot be ‘in’ 

the talk, metaphors and diagrams – these help to bring the readings into existence, but 

they are not the readings per se. So there is not an object – a ‘reading’ of the diagram – 

that exists ‘out-there’ waiting to be brought into ‘being’ through mediating means. The 

readings emerge and develop through the unity of the subject-mediating means-object. 

They are an example of tool-and-result.  

Tool-and- result means that no part of the practice can be removed and looked at 

separately. Like the classic vase and faces optical illusion neither the faces nor the vase 

can be removed and leave the other. There are no ‘scaffolds’ or other mediating means 

in terms of metaphors or diagrams that can be ‘removed’ to ‘leave’ the ‘objects’ of 

instruction (fractional readings). The ‘practice of method’ is entire and ‘(t)he practice 

of method is, among other things, the radical acceptance of there being nothing social 

(-cultural-historical) independent of our creating it’ (Newman and Holtzman, 1997, p. 

107). 

The most important corollary of the ‘practice of method’ is, for Newman and 

Holtzman the priority of creating and performing over cognition: 

We are convinced that it is the creating of unnatural objects–performances–which is 

required for ongoing human development (developing). (Newman and Holtzman, ibid, p. 

109). 
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Taking as my starting point that school mathematics involves the ‘creating of unnatural 

objects’ – mathematical objects – I now present an example of what mathematics as 

performance might look like. 

EXAMPLE OF A PERFORMATORY APPROACH TO MATHEMATICS. 

This example comes from work in a school that had a history of ‘under-performance’ 

in National Test scores (The development through performance perspective raises 

questions about what it means to ‘under-perform’). When I starting working in the 

school, the culture was such that the teachers spoke of the children not being able to 

‘do’ mathematics (Again a ‘performance’ perspective raises questions. Clearly there 

was a lot that these children could do. Observing them in the playground they were as 

capable as any other children of being able to ‘do’ play and, for some, with both 

parents out at work, they were able to ‘play’ a variety of roles at home, including 

care-takers of siblings. What makes ‘doing’ mathematics any more difficult than being 

able to ‘do’ play in the school-yard or ‘do’ the preparation of a meal?) 

In particular, the teachers spoke of the children not being able to talk about 

mathematics, and so the classroom environments were ones where the children were 

not encouraged to talk about mathematics.  

The performatory approach adapted was one of creating environments where children 

were encouraged and expected to talk. Two factors were central to this: the use of 

engaging contexts that the children could mathematise (Freudenthal, 1973) and getting 

children to cooperate in pairs to develop (improvise) solutions and then pairs coming to 

the front of the class to ‘perform’ their solutions.  

This example comes from working with a class of six- and seven-year-olds. It took 

place in February after we had been working with the class in this way since the 

previous September. The problem is adapted from the work of Fosnot and Dolk (2001). 

These situations were set up orally, not simply to reduce reading demands but to 

encourage children to ‘enter into’ the ‘world’ of the story. Most of the time the children 

willingly did this. Occasionally someone would ask ‘is this true’ (answered playfully 

with ‘what do you think?’) or a child would say, in a loud stage whisper ‘it’s not true 

you know, he’s making it up’, but even such ‘challenges’ to the veracity of the stories 

were offered and met with good humour and a clear willingness to continue to 

‘suspend disbelief.’ 

The context set up was that I had gone to visit a cousin in the country, who ran a sweet 

shop. One of her popular lines was flavoured jellybeans. These were delivered in 

separate flavours and then mixed together for various orders. During my visit my 

cousin had some bags of six different flavours of jellybeans: did she have enough 

jellybeans to make up total order for 300 beans? Knowing that I was a teacher, she 

wondered whether the children I worked with would help her figure out if she had 

enough. Of course they would. I invited the children to offer flavours, hoping that they 

would come up with some Harry-Potteresque suggestions (ear-wax or frog?) for 
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flavours. They were conservative in their choices of fruit flavours, so I added in the last 

two. On the board was a list of flavours and the numbers of each: Strawberry – 72; 

Orange – 23; Cherry – 33; 

Apple – 16; Broccoli; 20; Fish 

- 72. 

The class had been introduced 

to using the empty number line 

as a tool (prop in the theatrical 

sense) for supporting addition 

and subtraction, but they had 

not been presented with a 

string of five two-digit 

numbers before – this was well 

in advance of what children of 

this age are expected to be able 

to do independently. All the 

children were provided with 

paper and pencil but we also had other props ready to hand in the form of base-ten 

blocks for anyone who wanted or needed to use these. Some did use the blocks but the 

majority of the class were content to work only with paper and pencil. Here are two 

improvised solutions from two pairs of children – a girl and boy in each case. 

The children’s whose work is 

shown in Figure 3 wrote down 

the six numbers in the order 

that they had been put up on 

the board, but added them in 

the order of largest number to 

smallest. They could figure out 

that 80 + 72 was 152 without 

writing everything down, 

ticked off these two numbers 

and then used an empty 

number line to add on each of 

the remaining four numbers in 

descending order of 

magnitude.  

The children’s whose work is shown in Figure 4 adopted a different approach. They 

partitioned each number into its constituent tens and ones, added the tens, two at a time, 

until the total number of tens was reached. Then they added the ones, finishing off by 

adding the tens and ones together. 

As the children were figuring out their solutions, the teacher and I were able to decide 

who would ‘perform’ their solutions to the rest of the class. These two pairs were 

Figure 3 

Figure 4 

Figure 3 

Figure 4 
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included in this selection, and, like the others chosen, were given due warning of this 

so that they had time to prepare what they were going to say 

DISCUSSION 

Did the children learn about addition through this lesson? I cannot say. What was of 

concern was that they learnt that mathematics is learnable and that they were capable 

of performing it. Developmental learning involves learning act as a mathematician and 

the realisation that the choice to continue to act as mathematicians is available. 

Developmental learning is thus generative rather than aquisitional. As Holtman (1997) 

problematises it: 

Can we create ways for people to learn the kinds of things that are necessary for functional 

adaptation without stifling their capacity to continuously create for growth? 

This is a key question for mathematics education. In England, and elsewhere, policy 

makers are specifying the content and expected learning outcomes of mathematics 

education in finer and finer detail. For example, the introduction of the National 

Numeracy Strategy in England brought with it a document setting out teaching and 

learning objectives – the ‘Framework for Teaching Mathematics from Reception to 

Year 6’ (DfEE, 1999) – a year-by-year breakdown of teaching objectives. The 

objectives within the framework are at a level of detail far exceeding that of the 

mandatory National Curriculum (NC).  

The NC requirements for what 7- to 11-year-olds should know and understand in 

calculations is expressed in just over one page and, typically, include statements like: 

work out what they need to add to any two-digit number to make 100, then add or subtract 

any pair of two-digit whole numbers, handle particular cases of three-digit and four-digit 

additions and subtractions by using compensation or other methods (for example, 3000 – 

1997, 4560 + 998) (Department for Education and Employment (DfEE), 1999a, p.25). 

In contrast, the Framework devotes over 50 pages to elaborating teaching objectives 

for calculation, at this the level of detail: 

Find a small difference between a pair of numbers lying either side of a multiple of 1000 

 • For example, work out mentally that: 

  7003 – 6988 = 15 

  by counting up 2 from 6988 to 6990, then 10 to 7000, then 3 to 7003 

 • Work mentally to complete written questions like 

  6004 – 5985 = □ 6004 – □ = 19 □ – 5985 = 19  

(Department for Education and Employment (DfEE), 1999b, Y456 examples, p 46) 

While teachers have welcomed this level of detail, there is a danger that ‘covering’ the 

curriculum (in the sense of addressing each objective) becomes the over-arching goal 

of teaching, that ‘acquisition’ of knowledge by learners becomes paramount and the 

curriculum content reified and fossilised. In particular the emphasis is on knowing 

rather than developing. Does ‘coverage’ of pages of learning outcomes help students 

view themselves as being able to act as mathematicians? 
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CONCLUSION 

What might it mean to have a mathematics education that is not predicated on 

‘knowing’ – after all, is not the prime goal that students should come to ‘know’ some 

mathematics. I think the issue here is not whether or not we should (or even could) 

erase ‘knowing’ from the mathematics curriculum, but that we need to examine 

carefully what it means to come to know, and in particular, the ‘myth’ that, as teachers, 

we can specify in advance exactly what it is that students will come to know. The 

scaffolding metaphor carries certain connotations – plans and blue-prints. In 

architecture, the final product, the building, can be clearly envisaged in advance of 

starting it. Thus ‘scaffolding’ appeals to our sense of being in control as teachers, it 

taps into a technical-rationalist view of teaching and learning. Get your plans carefully 

and clearly laid out (and checked by an authority, or failing that ‘download’ them from 

an authoritative source), put up the right scaffold in the lesson and all will be well (if 

only!). 

Rather than learning in classrooms being built up in this pre-determined way, I want to 

suggest that maybe it is more like ants constructing ant-hills: Ants don’t (at least we 

assume) start out with a blue-print of the ant-hill that will be constructed. The ant-hill 

emerges through their joint activity. What emerges is recognizably an ant-hill (and not 

an eagle’s nest) although the precise structure is not determined until completion (if 

such a state ever exists). Ants are not ‘applying’ a method in order to construct ant-hills, 

they are simply practicing their method. 

In the same way, children playing at being ‘mummies-and-daddies’ are not ‘applying’ 

a method of ‘play’ they are simply involved in the practice of play. Such play is 

performatory (they don’t sit around planning what to play, they simply get on and play) 

and improvisational (the ‘events’ and ‘shape’ of the play emerge through the practice 

of the play). The children’s play does not set out to be ‘about’ anything in particular, 

expect in the broadest terms of being about ‘mummies-and-daddies’ as opposed to, say, 

‘princesses-and-princes’. It is this playful, performatory, improvisational practice of 

method, that Holtzman and Newman argue can help classrooms become 

developmental 

In ‘playing’ the roles of helping the shopkeeper solve her problem, through 

cooperations the children were able to perform ‘beyond’ themselves, “performing a 

head taller than they are” (Vygotsky, 1978 p. 102) In such circumstances, the 

mathematics emerges in classrooms, but the precise nature of it cannot be determined 

in advance – I have to trust to the process, rather than try to control it. The solution 

methods to the jellybean problem could not have been closely pre-determined, but trust 

in the capability of the children to perform as mathematicians allowed rich solutions to 

emerge. 

That is not to say that teaching does not rest on careful preparation – good 

improvisation does too – but that the unfolding, the emergence of a lesson cannot be 



Askew 

PME31―2007 2-40

that tightly controlled (or if it is that the learning that emerges is limited and resistricted 

to being trained rather than playing a part).  
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HOW CAN WE ASSESS MATHEMATICAL UNDERSTANDING? 

Patrick Barmby, Tony Harries, Steve Higgins and Jennifer Suggate 

Durham University, United Kingdom 

 

In assessing students in mathematics, a problem we face is that we are all too often 

assessing only a limited part of their understanding. For example, when asking a 

student to carry out a multiplication calculation, are we really assessing their 

understanding of multiplication? To be clear about how we do this, we need to be clear 

about understanding itself. Therefore, this paper begins by providing an overview of 

what we mean by this concept of understanding. Having established a working 

definition, we examine a range of possible approaches that we can bring to assessing 

understanding in mathematics.. The contribution of this paper is to clarify this link 

between assessment and understanding, and explain why more novel methods of 

assessment should be used for this purpose, 

 

The aim of this theoretical paper is to examine the different ways in which we can 

examine students’ understanding in mathematics. In order to do so, we begin by 

defining exactly what we mean by understanding in this context, before moving on to 

examine what this means for the methods of assessment that we can employ. By being 

clear about what understanding is, we can show that more ‘novel’ approaches to 

assessment are needed if we are to try and access this. This will have implications for 

how we carry out research into students’ understanding of mathematical concepts.  

 

DEFINING ‘UNDERSTANDING’ 

We begin by examining some definitions or explanations of ‘understanding’ in 

mathematics. Skemp (1976) identified two types of understanding; relational and 

instrumental. He described relational understanding as “knowing both what to do and 

why” (p. 2), and the process of learning relational mathematics as “building up a 

conceptual structure” (p. 14). Instrumental understanding, on the other hand, was 

simply described as “rules without reasons” (p. 2). 

Nickerson (1985), in examining what understanding is, identified some ‘results’ of 

understanding: for example agreement with experts, being able to see deeper 

characteristics of a concept, look for specific information in a situation more quickly, 

being able to represent situations, and envisioning a situation using mental models. 

However, he also proposed that “understanding in everyday life is enhanced by the 

ability to build bridges between one conceptual domain and another” (p. 229). Like 

Skemp, Nickerson highlighted the importance of knowledge and of relating 

knowledge: “The more one knows about a subject, the better one understands it. The 
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richer the conceptual context in which one can embed a new fact, the more one can be 

said to understand the fact.” (p. 235-236) Hiebert and Carpenter (1992) specifically 

defined mathematical understanding as involving the building up of the conceptual 

‘context’ or ‘structure’ mentioned above. 

“The mathematics is understood if its mental representation is part of a network of 

representations. The degree of understanding is determined by the number and strength of 

its connections. A mathematical idea, procedure, or fact is understood thoroughly if it is 

linked to existing networks with stronger or more numerous connections.” (p. 67) 

Therefore, this idea of understanding being a structure or network of mathematical 

ideas or representations comes out clearly from the literature.  

Another important issue that emerges from the above discussion is whether we are 

referring to understanding as an action or as a result of an action.  Sierpinska (1994) 

clarified this by putting forward three different ways of looking at understanding. First 

of all, there is the ‘act of understanding’ which is the mental experience associated with 

linking what is to be understood with the ‘basis’ for that understanding. Examples of 

bases given by her were mental representations, mental models, and memories of past 

experiences. Secondly, there is ‘understanding’ which is acquired as a result of the acts 

of understanding. Thirdly, there are the ‘processes of understanding’ which involve 

links being made between acts of understanding through reasoning processes, 

including developing explanations, learning by example, linking to previous 

knowledge, linking to figures of speech and carrying out practical and intellectual 

activities. Sierpinska (1994) saw these processes of understanding as ‘cognitive 

activity that takes place over longer periods of time’ (p. 2). In making links between 

understandings of a mathematical concept through reasoning, for example showing 

why 12 × 9 gives the same answer as 9 × 12, we further develop our understanding of 

the concept. Duffin and Simpson (2000) developed Sierpinska’s categories, referring 

to the three components as building, having and enacting understanding.  

Drawing the various view points from past studies together therefore, the definitions of 

understanding that we use are the following: 

• To understand mathematics is to make connections between mental 

representations of a mathematical concept. 

• Understanding is the resulting network of representations associated with that 

mathematical concept. 

These definitions draw together the idea of understanding being a network of 

internalised concepts with the clarification of understanding as an action and a result of 

an action. We have drawn on the definition of Hiebert and Carpenter (1992) and 

broadly termed what we link within this network (including the mental representation 

of what we are trying to understand, mental models and the memories of past 

experiences) as mental representations. We view the enacting of or the result of 

understanding as being distinct, which has implications later when we come to 

consider how we assess understanding in mathematics.  
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DEFINING ‘REPRESENTATIONS’ 

Having adopted a definition for understanding that involves ‘representations’, we 

should now define what we mean by this. First of all, we should clarify that we are 

referring to mental or internal representations, using the definition from Davis (1984): 

“Any mathematical concept, or technique, or strategy – or anything else mathematical that 

involves either information or some means of processing information – if it is to be present 

in the mind at all, must be represented in some way.” (p.203) 

By their very nature, we can only speculate on the possible forms of internal 

representations. In previously trying to obtain a definition of understanding, we 

grouped together the bases suggested by Sierpinska (1994) under the term ‘mental 

representations’. In addition though, Goldin (1998) put forward a variety of internal 

representations; verbal/syntactic, imagistic, symbolic, planning/monitoring/ 

controlling and affective representation. An internal representation of a mathematical 

concept might therefore involve facts about that concept, pictures or procedures we 

might draw on in order to explore the concept, and how we have felt in the past 

working with that concept.  In coming to understand more about that mathematical 

concept, we link together these separate representations to create a more complex 

understanding about that concept.    

Although understanding in mathematics is based on internal representations, in 

instruction and assessment, what we actually use are ‘external’ representations of 

concepts. For example, external representations such as spoken language, written 

symbols, pictures and physical objects are used in order to communicate mathematics 

(Hiebert and Carpenter, 1992). Miura (2001) referred to internal and external 

representations as ‘cognitive’ and ‘instructional’ respectively. The processes of 

understanding put forward by Sierpinska (1994) can be mediated through external 

representations, for example the proof of why √2 is an irrational number can be 

achieved through the manipulation of symbols and logical statements. In assessment, 

we are usually asking students to communicate the result of their understanding, using 

external representations to do so. One might assume that there will be some connection 

between the external representations used in instruction or assessment, and the internal 

representations developed by students. However, we must recognise the difficulty that 

“it is more problematic to assume that the connections taught explicitly are internalised 

by the students.” (Hiebert and Carpenter, 1992, p. 86, our emphasis.) We can only try 

and access students’ understanding through external representations, in light of what 

we think is the structure of this understanding.  

 

ASSESSING UNDERSTANDING 

Having clarified what we mean by mathematical understanding, we can now finally 

turn to the main aim of the paper, that is to look at ways in which we can assess 

understanding in mathematics. We have already highlighted a drawback to any 
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potential method, using external representations of mathematical concepts to try and 

access connections made between internal representations. However, our clarification 

has resulted in two points which we can take forward:  

• Understanding as connections made between mental representations. 

• This understanding is distinct from the result (or enacting) of that 

understanding. 

Hiebert and Carpenter (1992) stated that “understanding usually cannot be inferred 

from a single response on a single task; any individual task can be performed correctly 

without understanding. A variety of tasks, then, are needed to generate a profile of 

behavioural evidence.” (p. 89) In recognising understanding as a more complex 

network, if we are to assess this understanding then we need to try and access the 

different connections that a student has. All too often, when we assess students’ 

understanding in mathematics, we are gaining insight into only a small part of this 

network. Also, being able to carry out a mathematical task implies only that some 

understanding is there (this might only be links between the concept and a procedural 

model associated with that concept), not the extent of that understanding. An 

interesting development of this idea is the ‘non-binary nature’ of understanding 

(Nickerson, 1985). If a student has come across a concept in any way, then they will 

have some understanding of that concept, however limited or inappropriate the links 

within their understanding might be. Also, we can never have complete understanding; 

we can always develop understanding by developing more links, for example between 

apparently very different concepts that we have not associated together previously.  

In light of these points, we can consider different ways in which we can assess this 

understanding. Possible methods suggested by Hiebert and Carpenter (1992) were to 

analyse: 

• Students’ errors. 

• Connections made between symbols and symbolic procedures and 

corresponding referents. 

• Connections between symbolic procedures and informal problem solving 

situations. 

• Connections made between different symbol systems. 

We can use these suggestions as a starting point to examine the possibilities for 

assessing mathematical understanding. 

 

Students’ errors 

From our definition of mathematical understanding, we can see why simple 

calculations that we often use in the classroom are limited in their ability to assess 

understanding. For example, as highlighted by Skemp (1976), students can work 

instrumentally, only linking procedural representations with the concept and not other 

representations that might explain why the procedures are appropriate. Hiebert and 
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Carpenter (1992) state that “any individual task can be performed correctly without 

understanding.” (p. 89) We would modify this and say that an individual task can be 

performed with only limited understanding. Therefore, the fact that a student gets a 

calculation correct tells us little about the extent of their understanding. However, 

when a student makes a mistake in a calculation, then this might indicate the 

limitations of their understanding, even if that understanding is only instrumental. 

 

Connections made between symbols and symbolic procedures and corresponding 

referents 

Alternatively, if we ask students to explain what they are doing in mathematical tasks, 

then we can try and infer the links that they have made between different mental 

representations. Students might explain a calculation using external concrete objects, 

pictures or other symbolic procedures. Of course, we have the limitation that we are 

not directly accessing students’ internal representations. However, we might expect 

extensive links made between external representations to imply a more developed 

network of internal representations. As an example of this approach, Davis (1984) 

outlined the methodology for ‘task-based interviews’ used by him to examine students 

doing mathematical calculations. The students can be asked to ‘talk aloud’ whilst 

doing the calculation, with audio and video recording of the sessions, as well as the 

writing produced by the student and observation notes made by researchers. Providing 

students with opportunities to explain their reasoning in written tests can be used for 

this purpose as well. Watson et al. (2003) provided another interesting example where 

a questionnaire to examine students’ understanding of statistical variation was 

developed. Opportunities to ‘explain’ responses, as well as the straightforward stating 

of answers, were included in the questionnaire. All responses and explanations were 

coded according to the perceived level of understanding of the topic, and a Rasch 

analysis was carried out on the resulting data to obtain a hierarchy of understanding of 

different aspects of statistical variation. We can also use student errors for the purpose 

of eliciting these connections between representations. If we ask students to explain 

why an error has been made in a calculation, then what we are encouraging them to do 

is to show the links between the procedural representation and other representations for 

that concept. For example, Sowder and Wheeler (1989) based interviews around 

solutions to estimation problems from hypothetical students in order to elicit 

explanations.  

 

Connections between symbolic procedures and informal problem solving 

situations 

In analysing students’ approaches to solving specific tasks involving a particular 

mathematical topic, our examination of understanding may be constrained by the 

‘closed’ nature of the task. If we provide more ‘open’ problem solving situations where 

what is required is not obvious, then we might access more of the understanding held 
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by a student. For example, Cifarelli (1998) used algebra word problems to access 

problem solving processes used by students (therefore looking at broader procedural 

representations for tackling mathematical problems) rather than a specific 

understanding of a mathematical topic. Once again, task-based interviews with audio 

and video recording were used for data collection. Another recent study employing this 

type of approach was carried out by Kannemeyer (2005). However, in analysing the 

resulting data, approaches to problem solving were categorised in terms of different 

categories of explanation provided by students. A ‘fuzzy’ mark (between 0 and 1) was 

awarded for each category in any given explanation, and the marks combined together 

using fuzzy logic to obtain an overall mark for understanding. This approach enabled 

quantitative measures of understanding to be obtained from more unstructured 

qualitative data sources.     

 

Connections made between different symbol systems 

The example that Hiebert and Carpenter (1992) provided for this form of assessing 

understanding was to examine extending the use of a particular symbolic 

representation (e.g. being able to extend decimal notation to include thousandths) or 

using different symbolic representations of the same mathematical idea (e.g. 

representing decimals as fractions). However, we can take a broader view of this 

category to include connections to common visual representations of mathematical 

ideas as well.  For example, we can draw on some of our own work that we have 

recently been carrying out, looking at children’s understanding of multiplication. 

Harries and Barmby (2006) carried out research where children were asked to 

represent a multiplication sum using an array on a computer screen. Children worked 

in pairs with microphones connected to the computer, and a recording of their 

discussions and their work on the screen was made using Camtasia® software. This 

methodology provided us the opportunity of observing whether children could make 

the links between the symbolic and the particular visual representation in a more 

natural setting, without a researcher or video cameras possibly impacting on the 

situation.  We plan to extend this research in the coming year, once again using 

computer programs to investigate children making links with a variety of visual 

representations and symbolic representation for multiplication. By looking at the 

variety of external representations that they can link together, we want to try and gain 

some insight into the internal understanding that they have for multiplication.  

Other strategies for assessing understanding 

As highlighted previously, in assessing the understanding of a mathematical concept, 

we want to find out the different internal representations that a student might hold 

about the concept, whether they are procedural, conceptual or even affective 

representations related to the concept. Also, we want to find out ways in which the 

representations are linked together. Two other strategies for trying to get an external 

manifestation for these internal links are to use concept maps and mind maps. 
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Brinkmann (2003) provided an overview for using these tools in the context of 

mathematics education, and Williams (1998) used concept mapping to assess students’ 

understanding of the concept of function. McGowan and Tall (1999) also used concept 

maps produced at different times to show the development of students’ understanding 

of function. Both concept maps and mind maps involve starting with a particular topic 

in a drawing, and placing ideas and concepts that one associates with the central 

concept in the drawing as well. Connections between these can be physically drawn as 

lines. Further ideas and concepts can then be added, emanating from the 

‘sub-concepts’ that have been added around the central topic. Williams (1998) 

highlighted two possible advantages of using such methods: “The rationale for using 

concept maps in this study was to maximise participant involvement and to minimize 

the researcher’s intrusive role … Mathematical knowledge and structure do not lend 

themselves to simple categorizations, but they can be depicted well by concept maps.” 

(p. 414) By using concept or mind maps, we can view the links that students can make 

externally (e.g. does a child have a visual representation for a multiplication 

calculation?) and therefore indirectly assess their understanding and also imply gaps 

that they might have in their understanding. 

 

SUMMARY 

In this paper, we have used the existing literature to obtain a working definition for 

mathematical understanding. Having established this definition, we have been able 

look at what this means if we want to assess students’ understanding of mathematical 

concepts. We have outlined a range of possible assessment methods for mathematical 

understanding, most of which are quite different from the more ‘traditional’ methods 

of assessment that we use. The next step that we will take in our own research is to use 

the ideas and methods set out in this paper (in particular, we hope to take a detailed 

look at children’s understanding of multiplication). The clarification of the concept of 

understanding, and the identification of methods that we might employ, is an important 

step in looking at students’ understanding of mathematical concepts. 
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A variety of perspectives on the nature and role of discourse in the teaching and 

learning of mathematics have been developed and applied in recent years. The conduct 

of research in mathematics education can also, however, be viewed from a discursive 

perspective. In this paper, I draw on discursive psychology, which has been described 

as an anti-cognitivist, anti-realist, anti-structuralist approach to discourse analysis 

and psychology. Based on this perspective, I examine discursive features of a research 

paper on mathematical thinking to argue that, within the mathematics education 

research community, researchers’ descriptions of students’ behaviour and interaction 

make possible subsequent accounts of mathematical thinking, rather than the other 

way around. 

DISCURSIVE PERSPECTIVES ON THE TEACHING AND LEARNING OF 

MATHEMATICS 

A variety of perspectives on the nature and role of discourse in social life have 

influenced research within mathematics education in recent years. Some research has 

drawn on sociological theories of interaction, including interactional sociolinguistics 

and symbolic interactionism to explore the social organisation of mathematics 

classroom discourse, highlighting, for example, the conventions and norms that arise 

(Yackel and Cobb, 1996). A related body of work has drawn on sociocultural theory to 

argue that, in mathematics, talk is ‘almost tantamount to thinking’ (Sfard, 2001, p. 13; 

Lerman, 2001). Such studies have, for example, attempted to trace the processes of 

socialisation through which students learn to use mathematical discourse and to do 

mathematics (e.g. Zack and Graves, 2001). Others have been more interested in the 

specific nature of interaction in mathematics classrooms. This work includes studies 

that draw on social-semiotic perspectives to explore, for example, the nature and role 

of mathematical texts and of intertextuality in mathematics education (e.g. Chapman, 

2003). Similarly, others have emphasised the situatedness of mathematical meaning 

within classroom discourse (Mosckovich, 2003). Some researchers have turned to 

post-structuralism to examine the processes through which mathematics, teachers and 

students are positioned or constructed by mathematical discourses (e.g. Brown, 2001). 

More recently, discursive perspectives have led to new insights into the relationship 

between mathematics classroom interaction and wider political concerns, such as, for 

example, the role of different languages in multilingual settings (Setati, 2003). 

In general, the various approaches summarised above have sought to understand 

different aspects of mathematical thinking (which, for this paper, I will use to also 
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encompass mathematical learning, meaning and understanding). These approaches 

generally highlight a central role for language, symbols and interaction in 

mathematical thinking. Conducting such research is also, however, a discursive 

process, involving, for example, the production and interpretation of various kinds of 

texts, such as tape-recordings of interviews, lesson transcripts or field notes. The 

discursive nature of this process has received less attention within the field of 

mathematics education. In this paper, I explore one particular aspect of the research 

process: the published research paper. To do so, I will draw on ideas developed in 

discursive psychology, which are summarised in the next section. These ideas 

highlight, amongst other things, the role of description in constructing both mind and 

reality. Taking one research paper (Sfard, 2001) as an example, I explore the role of 

description in the construction of mathematical thinking in published accounts of 

research. I conclude by discussing some possible implications for research in 

mathematics education. 

DISCURSIVE PSYCHOLOGY 

Discursive psychology (e.g. Edwards, 1997; Edwards and Potter, 1992) has been 

described as offering an anti-cognitivist, anti-realist, anti-structuralist account of the 

relationship between discourse and cognitive process, such as thinking, meaning or 

remembering [1]. In the context of research in mathematics education, these points 

have the following implications (for which I have drawn particularly on Edwards, 

1997): 

• Anti-cognitivist: entails a shift from a focus on ‘what happens in the mind’ (as 

an individual mental process) to how ‘what happens in the mind’ is done 

through discursive practice (as a socially organised process); thus, the nature 

of mathematical thinking or meaning, for example, are jointly produced 

through interaction.  

• Anti-realist: reality is seen as being reflexively (and so relativistically) 

constituted through interaction. Thus, in any given situation, mathematics or 

mathematical cognitive processes are not pre-given, but are brought about 

through talk. Rather than mathematical meaning, for example, being 

pre-determined by words, symbols or diagrams, participants read such 

meanings into these things through their interaction.  

• Anti-strucuturalist: following the preceding point, mathematical meaning and 

the organisation of mathematical interaction are situated, both in time and in 

place, emerging from preceding interaction, rather than in standard, 

predictable ways. 

As Edwards (1997, p. 48) points out, this perspective is to some degree related to 

socio-cultural approaches to psychology. Both approaches recognise the central role 

played by social processes, culture and language in the development of the human 

mind. For much research influenced by sociocultural theory, however, the aim is to 

understand how the mind works, even if mind is constructed through participation in 
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society. Discursive psychology, by contrast, is more interested in how ideas like 

‘mind’ are constructed in particular situations. The difference, Edwards argues, is 

broadly between ontological and epistemological concerns: 

In discursive psychology, the major sense of ‘social construction’ is epistemic: it is about 

the constructive nature of descriptions, rather than of the entities that (according to 

descriptions) exist beyond them. (Edwards, 1997, pp. 47-48) 

In this approach, therefore: 

Mind and reality are treated analytically as discourse’s topics and businesses, the stuff that 

talk is about, and the analytic task is to examine how participants descriptively construct 

them. (Edwards, 1997, p. 48) 

In the case of research in mathematics education, concerns with mathematical thinking, 

for example, or the nature of mathematics, would be treated as discursive constructs. I 

have sought to use these ideas to analyse various examples of mathematics classroom 

interaction (e.g. Barwell, 2001). My aim was to understand how school students and 

teachers jointly constructed mathematical understanding, thinking and learning. In this 

paper, however, I am interested in how mathematical thinking is constructed through 

the research process itself, particularly in research publications. To facilitate this 

inquiry, in the next section I examine one published paper by Anna Sfard. 

DESCRIPTION AND MATHEMATICAL THINKING: AN EXAMPLE 

The paper I have selected (Sfard, 2001) concerns the relationship between discourse 

and mathematical thinking. The paper is interesting, in that it compares two ways of 

viewing mathematical thinking: the cognitivist, learning-as-acquisition approach and a 

communicative, learning-as-participation approach. Sfard sees these two approaches 

as complementary (p. 49). One strand within the paper involves the presentation and 

discussion of an exchange between a pre-service teacher and a 7-year old girl, 

reproduced below (see Sfard, 2001, p. 19). In what follows, I examine this strand of the 

paper from the perspective of discursive psychology. 

 

Teacher: What is the biggest number you can think of? 

Noa: Million. 

Teacher: What happens when we add one to million? 

Noa: Million and one. 

Teacher: Is it bigger than million? 

Noa: Yes. 

Teacher: So what is the biggest number? 

Noa: Two millions. 

Teacher: And if we add one to two millions? 

Noa: It’s more than two millions. 

Teacher: So can one arrive at the biggest number? 
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Noa: Yes. 

Teacher: Let’s assume that googol is the biggest number. Can we add  
one to googol? 

Noa: Yes. There are numbers bigger than googol. 

Teacher: So what is the biggest number? 

Noa: There is no such number! 

Teacher: Why there is no biggest number? 

Noa: Because there is always a number which is bigger than that? 

 

In discussing this exchange, initially from a cognitivist perspective, Sfard writes: 

Clearly, for Noa, this very brief conversation becomes an opportunity for learning. The girl 

begins the dialogue convinced that there is a number that can be called ‘the biggest’ and 

she ends by emphatically stating the opposite: ‘There is no such number!’. The question is 

whether this learning may be regarded as learning-with-understanding, and whether it is 

therefore the desirable kind of learning. (Sfard, 2001, p. 19) 

This paragraph is a description of what happened in the conversation. The description 

is plausible. Nevertheless, the description constructs various aspects of mathematical 

thinking on the part of Noa. In particular, Noa is constructed as being ‘convinced’ that 

there is a biggest number at the start of the conversation. Sfard describes Noa’s 

penultimate contribution that there is ‘no such number’ as ‘emphatic’, also implying a 

degree of conviction. The use of ‘emphatic’ is linked to the use of an exclamation mark 

(!) in the transcript, adding to the reasonableness of the description. Noa is also 

described as having produced opposing statements. These statements are implicitly 

interpreted as a chronological shift, which is, in turn, called ‘learning’. ‘Being 

convinced’ and ‘learning’ are aspects of mathematical thinking that are, however, read 

into the conversation through the description. By juxtaposing two of Noa’s statements 

and describing them as opposites, the description makes possible, for example, the 

interpretation that learning has taken place. 

Later in the same article, Sfard offers, by way of contrast, a more discursive 

perspective on the same extract: 

…much of what is happening between Noa and Rada may be explained by the fact that 

unlike the teacher, the girl uses the number-related words in an unobjectified way. The 

term ‘number’ functions in Noa’s discourse as an equivalent of the term ‘number-word’, 

and such words as hundred or million are things in themselves rather than mere pointers to 

some intangible entities. If so, Noa’s initial claim that there is a biggest number is perfectly 

rational. Or, conversely, the claim that there is no biggest number is inconsistent with her 

unobjectified use of the word ‘number’: After all, there are only so many number-words, 

and one of them must therefore be the biggest, that is, must be the last one in the well 

ordered sequence of numbers…Moreover, since within this type of use the expression 

‘million and one’ cannot count as a number (but rather as a concatenation of numbers), the 

possibility of adding one to any number does not necessitate the non-existence of the 

biggest number. (Sfard, 2001, p. 46) 
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Again, Sfard offers a plausible account, with the aim, in this case, of resolving the 

puzzle raised earlier, of how Noa comes to be ‘convinced’ of opposing ideas in the 

space of a short conversation. Again, however, Sfard’s description constructs various 

forms of mathematical thinking on the part of Noa. A key feature of the description is 

the idea that Noa is interpreting the word ‘number’ as ‘an equivalent of the term 

‘number word’’. Based on this description, Sfard is able to provide a rational account 

of Noa’s utterances. Indeed, the later part of the above paragraph is devoted to setting 

out the linguistic and mathematical basis for that rationality, which amounts to a 

reading of Noa’s mathematical understanding in the earlier stages of the exchange. 

Thus, the nature of the description is intimately related with the argument that Sfard is 

pursuing. By setting out a particular version of what is happening in the conversation, 

Sfard makes available particular inferences about Noa’s (cognitive) interpretations, 

which in turn fit in with Sfard’s larger argument that the conversation represents an 

example of discursive conflict: 

…both interlocutors seem interested in aligning their positions. The teacher keeps 

repeating her question about the existence of ‘the biggest number’, thus issuing meta-level 

cue signalling that the girl’s response failed to meet expectations. In order to go on, Noa 

tries to adjust her answers to these expectations, and she does it in spite of the fact that what 

she is supposed to say evidently does not fit with her use of the words the biggest number. 

(Sfard, 2001, p. 46) 

The notion of discursive conflict stresses the clash of habitual uses of words, which is an 

inherently discursive phenomenon. In our present case [of Noa], we could observe a 

conflict between the two interlocutors’ discursive uses of the words ‘number’ and ‘bigger 

number’. While aware of the fact that the teacher was applying these terms in a way quite 

different from her own, Noa was ignorant of the reasons for this incompatibility. In this 

case, therefore, the girl had to presume the superiority of her teacher’s use in order to have 

any motivation at all to start thinking of rational justification for a change in her own 

discursive habits. (Sfard, 2001, p. 48) 

The notion of discursive conflict originates, perhaps, in the first paragraph above, an 

account of the conversation in largely discursive terms; that is, in terms of cues, repeats 

and alignments. Even in this description, however, a degree of intention is read into 

Noa’s behaviour: she ‘tries to adjust her answers’, for example. This reading is then 

overlaid, however, with a more cognitively oriented account of ignorance, 

presumptions, motivations and thinking. Again, then, it is the nature of the description 

that makes possible the inferences about Noa’s mathematical thinking. 

DISCUSSION 

My purpose in examining Sfard’s paper in such detail is not to challenge her argument. 

Her exploration of the idea of cognitive conflict and her proposal of the alternative idea 

of discursive conflict are interesting developments and likely to be valuable for 

research and teaching. Rather, I am interested in how mathematical thinking is 

discursively constructed through the process of doing and communicating research in 

mathematics education.  
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My discussion of Sfard’s paper particularly highlights the importance of descriptions 

of mathematical behaviour in constructing mathematical cognition. As Edwards (1997, 

pp. 37-43) has argued in the case of cognitive psychology, such descriptions play an 

important role: they make available particular interpretations of cognitive processes, 

whilst shutting out alternatives. Sfard’s descriptions, for example, build in cognitive or 

discursive conflict, which can then be made explicit. More generally then, in written 

research reports, descriptions of mathematical behaviour are likely to be shaped to suit 

an author’s wider argument concerning mathematical thinking and learning.  

Of course many authors acknowledge their subjectivity, in the sense that they make it 

clear that their analyses are interpretations. Indeed Sfard, in her article, compares two 

such interpretations. Commonly, such acknowledgements are, however, based on the 

argument that, by using an explicit theoretical framework and giving sufficient detail 

about how the data were analysed, readers can make up their own minds about the 

trustworthiness of the analysis. This kind of argument is based on a desire to get at an 

objective cognitive process that can be interpreted, however indirectly and tentatively, 

through participants’ behaviour. Students say things to their mathematics teachers and 

the task is to suggest what or how the student is thinking, learning or understanding. I 

am not making the reasonable point that language does not offer a ‘window’ into the 

mind. Research from a broadly socio-cultural perspective (including that of Sfard) 

recognises the complex role of language and culture in mathematical cognition and in 

the research process and generally accepts this point (see, for example, Lerman, 2001). 

Nevertheless, such research is attempting to say something about minds and their 

relationship with the world.  

There are a couple relevant points, then, that are commonly accepted by qualitative 

researchers relevant to this issue. Firstly, it is accepted that no description can be 

perfectly accurate. Secondly, it is accepted that all descriptions include some degree of 

bias or subjectivity on the part of the author. Both these points, however, assume that 

the problem is, simplistically put, one of accuracy. My point is slightly different: it is 

that the descriptions themselves constitute mathematical cognition as it is theorised 

and conjectured about in publications about mathematics education. So Sfard’s 

descriptions of Noa’s conversation with the teacher make possible the ideas about 

cognitive and discursive conflict that Sfard wishes to discuss (as much as the other way 

around).  

IMPLICATIONS AND QUESTIONS 

Providing descriptions of the interaction or behaviour of people engaged in doing or 

learning mathematics is an integral part of much published research in the field. There 

are, however, particular ways of writing such descriptions that are specific to the kind 

of writing found in research papers, as opposed to, say, newspaper reports. Moreover, 

whilst I have highlighted the role of description in the construction of mathematical 

thinking in written research reports, other parts of the research process are likely to 

draw on other practices. Interviews, for example, can be seen to construct 
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mathematical thinking in particular ways. Similarly, discussions between researchers 

or informal conversations at PME meetings may also contribute in different ways to 

the construction of mathematical thinking. An interesting question then arises of how 

these different discursive practices work together to produce accepted accounts of 

mathematical thinking within a wider community. It is also interesting to consider how 

descriptions work in different ways at different points in the process. The transcript of 

Noa and her teacher, for example, can be seen as another form of description, perhaps 

produced prior to analysis and the writing of a research paper. The structuring of such a 

transcript is also implicated in the construction of mathematical thinking that arises, as 

with, for example, the role of the exclamation mark I pointed out earlier.  

The practices I have highlighted are likely to be familiar to members of the PME 

community. PME members, however, are not the only people interested in 

mathematical thinking; it is also of interest to, for example, mathematics teachers, 

government advisors, students or textbook writers. The National Numeracy Strategy of 

England and Wales (DfEE, 1999), for example, includes descriptive lists of what 

‘pupils should be taught to know’, thereby constructing mathematical thinking as 

something that can be listed and broken down into small components to which teachers 

can be held accountable. In this case, therefore, descriptions are used to construct 

mathematical thinking in rather different ways to those found in research papers. This 

observation leads to a more general question. If the discursive practices of mathematics 

education research are implicated in the construction of mathematical thinking within 

the community of researchers, and if different discursive practices are used to construct 

mathematical thinking in different ways in different communities (such as those of 

teachers of curriculum writers), what is the relationship between them?  

Given the layers of reflexivity inherent in the argument I have made in this paper 

(including, for example, my use of descriptions of Sfard’s work), it would not make 

sense to suggest, for example, that researchers should be more careful when producing 

their own descriptions. Every description in a paper concerned with mathematical 

thinking is implicated in its construction. Two courses of action are perhaps possible, 

each equally valuable. One is for researchers to be aware of the practices through 

which their accounts of mathematical thinking are produced. The other is for further 

research to uncover more of the practices of our community, so that that awareness can 

be enhanced. 

NOTE 

1. The three antis are derived from a response given by Margaret Wetherell as part of a 

UK Linguistic Ethnography Forum colloquium at the annual meeting of the British 

Association for Applied Linguistics, Bristol, 15-17 September 2005. 
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MATHEMATICS-EDUCATION KNOWLEDGE AND SKILLS
1
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The interaction between Australia’s Eurocentric education and the complex culture of 

remote Indigenous communities often results in Indigenous disempowerment and 

educational underperformance. This paper reports on a mathematics-education 

research project in a remote community to support Indigenous teacher assistants (ITAs) 

in mathematics and mathematics tutoring in an attempt to reverse Indigenous 

mathematics underperformance. It discusses teachers’ and ITAs’ power and authority 

within school and community, describes the project's design, and summarises the 

project’s results in terms of affects and knowledge. It draws implications on the relation 

between ITA professional development (PD), affect, esteem, knowledge, authority, 

teacher-ITA partnerships, and enhanced Indigenous mathematics outcomes.  

For the last six years, we have been visiting remote communities to work with schools in 

an attempt to reverse the mathematics underperformance and low retention rate of 

Australian Indigenous students (MCEETYA, 2005; Queensland Studies Authority 

[QSA], 2006). We have found that a typical remote Australian Indigenous classroom has 

two staff members, namely, a young inexperienced non-Indigenous teacher and an older 

experienced ITA from the community (Cooper, Baturo & Warren, 2005; Warren, 

Cooper & Baturo, 2004). The teachers lack PD in Indigenous education and in working 

with another adult while the ITAs lack PD in how to assist the teacher educationally; the 

teachers usually leave the school after two years while the ITAs tend to remain. Thus, 

long-term projects with teachers in remote communities are problematic and led us to 

believe, like Clark (2000), that sustainable progress in remote school requires ITAs to be 

given a more central role in teaching. 

ITAs find that Australia’s highly Eurocentric education system (Rothbaum, Weisz, Pott, 

Miyake, & Morelli, 2000) lacks cultural understandings and clarity, leaving them with 

undefined roles and a sense of disempowerment even though they often hold positions 

of authority and esteem within their own communities (Matthews, Watego, Cooper & 

Baturo, 2005; Sarra, 2003). As a consequence, we find that most teacher-ITA 

interactions are impoverished and unjust (Sarra, 2003; Warren, Cooper & Baturo, in 

press) and fail to take account of the ITAs’ strengths (Cooper, Baturo & Warren, 2005). 

For this reason, we have changed our research focus from teachers to ITAs. This paper 

analyses the first research project
1
 we undertook with ITAs.  

                                           
1
 Project funded by Australian Government DEST Innovative Project Initiative grant. 



Baturo, Cooper & Doyle 

PME31―2007 2-58 

POWER AND AUTHORITY IN SCHOOL AND COMMUNITY 

Weber (Haralambos, Holborn & Heald, 2004) claims that power is realisation of will 

against the resistance of recipients, and authority is power legitimised by recipients.  

He identifies three types of authority: (1) traditional authority which is the “taken for 

granted” or consensual authority given to a role (such as “teacher”); (2) charismatic 

authority which comes from the special personality qualities of authority figure; and 

(3) bureaucratic authority which is based on legal structures (such as schools) 

(Haralambos et al., 2004). Table 1 (extended from Warren, Baturo & Cooper, in 

press) summarises these types for non-Indigenous teachers (called Ts for the table) 

and ITAs within school and community. The classifications depend on non-Indigenous 

teachers’ and ITAs’ roles in these two very different social structures. 

Table 1: Authority types, Teachers and ITAs in school and community 

School Community Authority 

type T ITA T ITA 

Traditional � � � unless long-

term or comm. 

role 

? depends on 

family status 

Charismatic ? depends 

on T 

? depends on ITA ? depends on T ? depends on 

ITA 

Bureacratic � � unless role part of 

school structure 

� not present ? depends on 

comm. status 

Commonly, the teacher’s authority comes from the school (traditional and bureaucratic 

authority), while the ITA’s authority comes from the community as most are respected 

community members or elders (predominantly traditional authority). This leaves many 

possibilities: (1) the most likely is for an ITA to have high traditional and, possibly, 

charismatic authority within the community, but no bureaucratic authority within the 

school; (2) an ITA with little community respect and poor charisma can have little 

authority in and out of a classroom; and (3) an ITA with strong community authority can 

have this authority transfer to the school.  

We also take cognisance of Foucalt’s (1991) notion that power is a relation in which 

knowledge has effect. This is supported by Warren, Baturo, & Cooper’s  (in press) 

findings and Smith’s (2002) arguments claiming that education generally improves 

authority, particularly for race. Smith also argues that Black Americans have less 

authority because they have less training, accreditation and status attainment. This 

includes job authority (the authority most at risk in terms of race) which is especially 

psychologically rewarding because it brings status inside and outside the workplace 

and is related to job satisfaction, personal identity and self esteem (Ardler, 1993).  

THE “TRAIN A MATHS TUTOR” RESEARCH PROJECT 

The project’s aim was to develop ITAs as mathematic tutors for underachieving 

Indigenous students (Baturo & Cooper, 2006). It was a qualitative interpretive action-
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research collaboration incorporating Smith’s (1999) decolonising methodology 

exhorting “empowering outcomes with the secondary (Grades 8-12) and primary 

schools (Grades 1-7) and the local Council within a remote Aboriginal community in 

which we had worked for three years. Our hope was that the project would provide an 

educational (rather than the usual behaviour management role) for the ITAs and to 

reverse Indigenous students’ mathematics underperformance.  

Participants. Eleven ITAs volunteered for the project (7 primary, 4 secondary), 

representing almost all the ITAs from both schools, a huge personnel investment. They 

were “long-term, local residents, mostly women, who work part-time for modest 

wages … often parents or grandparents of students” (Ashbaker & Morgan, 2001. p. 

2). Most feared mathematics, had received little PD in its teaching, and lacked 

understanding (only one could fully understand 3-digit numbers at the beginning of 

PD); their role in classrooms had been behaviour control. The PD took place in 

community buildings – PD sessions in a brand new council training building; lunch at 

the community centre. The tutoring trials took place at the secondary school with Years 

8-10 students who lacked understanding of 3-digit numbers.  

The Aboriginal community in which the research was sited was established in the early 

20th century and set up by forcible removal of Aboriginal people from their traditional 

lands, many of which were more than 1000 km away. Until the late 1970s, the 

community was owned by the government and run by white staff. At the end of the 

1970s, without training or preparation, the community was given to the Aborigines to 

run through a council. The community is made up of more than 10 different cultures 

making it difficult to get consensus on many issues. It shares the common problems of 

remote Indigenous communities: poverty, substance abuse, violence, poor health, low 

life expectancy and incarceration (Fitzgerald, 2001).  

In the year before the project, the students’ mathematics performance was below that of 

other similar Indigenous communities. School attendance was < 30%, behaviour was out 

of control in most classrooms, all Grade 2 students failed to meet State minimal 

standards, and many secondary students could not meet Grade 3 standards. The young 

inexperienced non-Indigenous teachers taught white urban mathematics with little or no 

Indigenous contextualisation (Matthews et al., 2005) to give relevance and build pride. 

However, the new primary-school principal was just about to set up a school renewal 

program based on the successful methods of Sarra (2003). 

The PD program. The program was based on two main assumptions: (1) ITAs, 

being long-term community members, would be familiar with community mores and 

language, able to meet the students’ cultural needs, and the schools’ key to stability 

(Baturo, Cooper & Warren, 2004; Clark, 2000), and (2) the PD should be “2-way 

strong” (we hoped to learn, from the ITAs, about Indigenous contextualisation and 

language in which to embed teaching). It was developed from three clusters of 

principles (Baturo & Cooper, 2006): (1) mathematics/pedagogy – teaching for 

structural understanding (Sfard, 1991) using kinaesthetic learning with materials and 

developing informal and formal language (Baturo, 2003, 2004); (2) PD - using train-
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trial cycles (where ITAs trial their ideas with students) with just-in-time support and 

reflection (Baturo, Warren & Cooper, 2004) and enough time set aside to do all at the 

detail required; and (3) social – experiencing success (Clarke & Hollingsworth, 2002), 

building group cohesion and ITAs’ identities (Sfard & Prusack, 2005) as tutors; and 

working in a positive learning space (Skill & Young, 2002).  

Procedure. A mathematics-education manual was produced for the ITAs (see online 

report – Baturo & Cooper, 2006). The PD program ran four hours a day Monday to 

Thursday for 4 weeks. Week 1 provided the mathematics and pedagogic background for 

the tutors while Weeks 2 to 4 focused on providing the tutors with particular 

mathematics and pedagogic skills for crucial transition points in teaching whole-number 

numeration. Weeks 2 to 4 were organised so that, every second day, the aides could trial, 

with actual students at risk with respect to mathematics, the numeration activities they 

had learnt the previous day. Even though the ITAs knew us very well, they were 

reluctant to attend as (they later told us) they were nervous of "doing the big maths". 

However, once they had experienced a session, they attended regularly. Lunch at the 

community centre and reflection sessions were made social occasions where ITAs and 

researchers could build personal relationships and group cohesion. The material to be 

trialled with students was designed to motivate and to ensure successful learning. 

The PD sessions, tutoring trials and reflection sessions were videotaped and field notes 

were written. At least 4 researchers were present for each PD and trialling session –one 

researcher taught while the others observed (PD) but all were available for intervention, 

if required, during the trials. Although some informal demographic data were gathered 

prior to the PD, we felt that we could not risk full pre-interviews with the ITAs because 

of the fragility of early attendance. We were also unable to undertake individual post-

interviews with ITAs due to the remoteness of the site and the difficulty in organising 

times. However, we were able to undertake a collective post-interview.  

Analysis. We evaluated the project from observations of, and informal discussions, with 

the ITAs during PD, trials and reflections, and audiotaped follow-up interviews with 

teachers and principals. In particular, we used a 5-point rating scale (1 low and 5 high) 

to jointly assess (all ratings were negotiated between 2 researchers) the ITAs at the 

beginning and end of the program in terms of: (1) mathematics and tutoring affects and 

beliefs, and (2) mathematics and pedagogy knowledge, and tutoring skill  

RESULTS 

Attendance and empowerment. The project was successful in terms of these ratings 

(Baturo & Cooper, 2005). Attendance was 90% for the PD when special personal and 

contextual circumstances were taken into account, a rate which experienced members 

of the community said was very high. For us, it was gratifying considering that 

attendance was not compulsory and PD took most of the school day (and some ITAs 

were under pressure from teachers to spend time in classrooms). One implication of 

such high attendance was that the PD “hit the spot” for ITAs in its focus (early 

mathematics), its pace and its stance that we were equal collaborators (2-way strong). 
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As their confidence increased across the four weeks, so too did their sense of job 

authority (as evidenced in their interactions with the students).  

Knowledge, affects and empowerment. From researcher, teacher and student 

observations, the project was highly successful (Baturo & Cooper, 2006). All 

researchers and observers commented on how dramatically the ITAs had changed across 

the four weeks of the course as initial shyness had been replaced by, as one researcher 

called it, a thirst for knowledge. The ITAs wanted all that we could give them on the 

structure of the number system and techniques for teaching it. The feedback from the 

ITAs to the PD and tutoring was infectious; again all researchers and observers felt it.  

The ITAs were excited about what they were learning and very proud of how they 

tutored the students; we were so nervous at the tutoring trials and the ITAs were so calm; 

the teachers and students were delighted by the tasks and their "new" tutors. We were 

also impressed with the ITAs' confidence, their use of materials and their questioning. 

One observer remarked that it was like a dam had burst and there was a pouring out 

of interest; another said it was like rain falling on land after a drought. One principal 

stated, the ITAs have been more successful in their work with students and far more 

confident in the way they deal with students generally in the classroom, the kids have 

also responded positively.  

The teachers were amazed at what the ITAs could do in the trials and wanted them to 

return immediately to the classroom and repeat it with their students. One teacher 

commented, kids were well behaved because they knew and liked what they were 

doing … for kids who generally didn’t succeed at school work, they liked the fact that 

they were able to succeed, and another supported, kids also seemed to enjoy every 

part of it particularly the one-on-one teaching they received. The teachers also 

commented on how the ITAs had changed across the four weeks, saying that now 

they moved around the classroom helping students in all subjects, not sitting back and 

watching as they had done before. The most powerful evidence was from the primary 

school principal who later gave credit to her ITAs’ tutoring skills for six students 

meeting the Year 2 minimum standards in mathematics, something which no student 

had achieved previously in the school.  

However, it was the community’s response to the PD that was most unexpected. The 

graduation ceremony we gave the ITAs became a major event in the town; many 

elders and community members attended as did external dignitaries in Indigenous 

Affairs. All applauded the success of the ITAs. One Elder commented that her 

generation was not educated past Year 4 and that she never thought she’d see the day 

when people of her community would have the opportunity to undertake a university 

program. Another commented that there was no shame. These and others indicated 

their pride in the ITAs’ achievement. 

Improvement in performance ratings was also significant (see Table 2), but this was 

almost a self- fulfilling prophecy considering the ITA’s lack of prior PD and limited 

previous education, and reactions to this PD opportunity. The initial ratings indicate 
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the novelty of the PD (and nervousness of the ITAs) whilst the final ratings indicated 

that the ITAs had engaged, learnt and grown confident.  

Table 2: IEWs’ pre-post ratings for mathematics and mathematics tutoring affects, 
knowledge and tutoring skill 

 Mathematics  Mathematics Tutoring 

Affect, knowledge and 

tutoring-skill characteristics 

Pre 

Mean 

Post 

Mean 

 Pre 

Mean 

Post 

Mean 

Affects Motivation 1.6 4.5  1.7 4.5 

  Confidence 1.6 4.4  1.5 4.4 

Knowledge  2-digit numbers 2.5 4.5  1.1 3.8 

  3-digit numbers 2.0 4.1  1.0 3.7 

Tutoring  2-digit numbers N/A N/A  1.9 4.3 

  3-digit numbers N/A N/A  1.7 4.1 

Note. N/A means “Not Applicable”. 

DISCUSSION AND IMPLICATIONS 

From the point of view of everyone involved, the PD program was successful − it 

improved ITAs’ mathematics knowledge and pedagogy and tutoring skills and built their 

confidence and gave them esteem within the community. It appeared to affect positively 

all who came in contact with it; for example, the government representative at 

graduation supported further grant applications and the primary principal’s open support 

in a meeting of State principals secured us the school support we needed for follow up 

research. It was evident that the ITAs were amenable to, needed, and benefited from the 

PD and that the project’s PD program was effective and efficient (Baturo & Cooper, 

2006). However, the interest in this paper is to understand how and why things appeared 

to work so well. For this, we will initially look at the effect of some of the program’s 

underlying principles, then at authority, and finally at a serendipitous confluence of 

interventions. Finally we will draw implications for future PD and research. 

Principles. The basis of the project’s success appeared to be how the principles 

interacted. First, our choice of using council buildings rather than the school as the 

learning space appeared to be influential. It made the program overt, public and visible 

to the community who gathered each day at the shops and council offices. It also gave 

the ITAs and the project the appearance of council approval and boosted the ITA’s 

esteem in the community. Second, our decision to teach mathematics for structural 

learning was also influential. The ITAs recognised that they were successfully learning 

and tutoring important basic concepts and processes (what they called, the big maths) 

not just simple facts and skills, and that the researchers had high expectations of them 

(an important component of improving performance and building pride according to 

Sarra, 2003). Third, our decision to have student trials and to design instruction to 

maximise ITA tutoring success worked, and boosted the ITAs’ confidence, motivation, 

pride and commitment and made them willing to try other new things (a PD cycle 

described in Clarke & Hollingsworth, 2002).  
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Authority. The project’s success can also be seen in terms of power and authority (see 

Table 3). The project provided the ITAs with knowledge and skills to operate 

successfully in classrooms in ways they had not known before, thus boosting ITA power 

and authority within the schools (Foucalt, 1991; Smith, 2002). Similarly, in Weber’s 

terms (Haralambos et al., 2004), the public nature of the project and the visible support 

of the council boosted the ITAs’ charismatic and bureaucratic authority in the 

community, particularly as regards job authority (Ardler, 1993). Consequently, the 

balance of teacher-ITA authority changed positively for the ITAs as per Table 3. 

Serendipity. At the same time as our project was running, the primary-school principal 

was putting in place a school renewal based on Sarra (2003), one of whose tenets is to 

increase Indigenous leadership in schools. As a consequence, the ITAs role in the 

primary school was given bureaucratic authority, thus further changing authority 

relationships (see Table 3). Thus, teacher-ITA partnerships were more equitable in 

primary than secondary school (which explains the greater success of the primary ITAs).  

Table 3: Authority types, Teachers and ITAs in school and community after PD 

School Community Authority 

type T ITA T ITA 

Traditional � present � not present � not present ? depends 

Charismatic ? depends � present ? depends � present 

Bureacratic � present � not present  

� present * 

� not present � present 

Note. * represents the change in the primary school after the principal’s school renewal. 

Implications. Two main implications emerged from the projects’ results. First, 

successful ITA PD requires structural mathematics, train-trial cycles, careful selection of 

learning space and a focus on success. These principles interact to build affect and 

esteem, and the ITAs become effective tutors and improve students’ mathematics 

outcomes (Baturo & Cooper, 2006). Second, any PD program to educate ITAs will have 

effects on authority within school and community which in this project led to more 

balanced power relationships, better teacher-ITA partnerships, greater school Indigenous 

influence and leadership, more contextualisation, pride and belief in ability, and 

improved mathematics outcomes (Foucalt, 1991; Matthews et al., 2005; Sarra, 2003; 

Smith, 2002; Warren Baturo, etal., in press). These authority changes must be catered for 

or they may have unwitting negative effects as well as serendipitous positive effects.  
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RAISING STUDENTS’ UNDERSTANDING: LINEAR ALGEBRA  

Marianna Bogomolny 

Southern Oregon University 

This study is a contribution to the ongoing research in undergraduate mathematics 

education, focusing on linear algebra. It is guided by the belief that better 

understanding of students’ difficulties leads to improved instructional methods. The 

questions posed in this study are: What is students’ understanding of linear 

(in)dependence? What can example-generation tasks reveal about students’ 

understanding of linear algebra? This study identifies some of the difficulties 

experienced by students with learning the concepts of linear dependence and 

independence, and also isolates some possible obstacles to such learning. In addition, 

this study introduces learner-generated examples as a pedagogical tool that helps 

learners partly overcome these obstacles.  

BACKGROUND AND THEORETICAL PERSPECTIVE 

There is a common concern expressed in the literature that students leaving a linear 

algebra course have very little understanding of the basic concepts, mostly knowing 

how to manipulate different algorithms. Carlson (1993) stated that solving systems of 

linear equations and calculating products of matrices is easy for the students. However, 

when they get to subspaces, spanning, and linear independence students become 

confused and disoriented: “it is as if the heavy fog has rolled in over them.” Carlson 

(1993) further identified the reasons why certain topics in linear algebra are so difficult 

for students. Presently linear algebra is taught far earlier and to less sophisticated 

students than before. The topics that create difficulties for students are concepts, not 

computational algorithms. Also, different algorithms are required to work with these 

ideas in different settings.  

Dubinsky (1997) pointed out slightly different sources of students’ difficulties in 

learning linear algebra. First, the overall pedagogical approach in linear algebra is that 

of telling students about mathematics and showing how it works. The strength, and at 

the same time the pedagogical weakness, of linear situations is that the algorithms and 

procedures work even if their meaning is not understood. Thus, students just learn to 

apply certain well-used algorithms on a large number of exercises, for example, 

computing echelon forms of matrices using the Gaussian row elimination method. 

Secondly, students lack the understanding of background concepts that are not part of 

linear algebra but important to learning it. Dorier, Robert, Robinet, and Rogalski 

(2000) identified students’ lack of knowledge of set theory, logic needed for proofs, 

and interpretation of formal mathematical language as being obstacles to their learning 

of linear algebra. Thirdly, there is a lack of pedagogical strategies that give students a 

chance to construct their own ideas about concepts in linear algebra.  

Examples play an important role in mathematics education. Students are usually 

provided with examples by teachers, but are very rarely faced with example-generation 
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tasks, especially as undergraduates. As research shows (Hazzan & Zazkis, 1999; 

Watson & Mason, 2004), the construction of examples by students contributes to the 

development of understanding of the mathematical concepts. Simultaneously, 

learner-generated examples may highlight difficulties that students experience. This 

study examines how and in what way example-generation tasks can inform about and 

influence students’ understanding of linear algebra. The APOS theoretical framework 

was adopted in this study to interpret and analyse students’ responses (Asiala et al, 

1996). 

METHOD  

The participants of the study were students enrolled in Elementary Linear Algebra 

course at a Canadian University. The course is a standard one-semester introductory 

linear algebra course. It is a required course not only for mathematics majors but also 

for students majoring in computing science, physics, statistics, etc. 113 students 

participated in the study. Later in the course the students were asked to participate in 

individual, clinical interviews. A total of six students volunteered to participate in the 

interviews. These students represented different levels of achievement and 

sophistication.  

The data for this study comes from the following sources: students’ written responses 

to the questions designed for this study, and clinical interviews. To follow the 

example-generation process, Task: Linear (in)dependence was included in the 

interview questions as well. Having students generate examples and justify their 

choices through written responses and in an interview setting provided an opportunity 

not only to observe the final product of a student’s thinking process but also to follow it 

through interaction with a student during his/her example-generation.  

Task: Linear (in)dependence 

a). (1). Give an example of a 3x3 matrix A with real nonzero entries whose columns a1, 

a2, a3 are linearly dependent. 

(2). Now change as few entries of A as possible to produce a matrix B whose columns 

b1, b2, b3 are linearly independent, explaining your reasoning.  

(3). Interpret the span of the columns of A geometrically 

b). Repeat part a (involving A and B), but this time choose your example so that the 

number of changed entries in going from A to B takes a different value from before.  

The prerequisite knowledge for many concepts in linear algebra is the linear 

dependence relation between vectors. The purpose of the task was to investigate 

students’ understanding of the concept of linear dependence and linear independence 

of vectors, in particular, in R
3
. Many concepts of linear algebra are connected, and 

students should be able to use all these terms freely and with understanding. On one 

hand, this task connects the number of linearly independent columns in a matrix A, the 

number of pivots in an echelon form of A, and the dimension of the vector space 



Bogomolny 

PME31―2007 2-67 

spanned by the column vectors of A. On the other hand, it connects the minimum 

number of entries required to be changed in A to make its columns linearly independent, 

and the number of free variables in the matrix equation Ax = 0. This task also explores 

the possible proper subspaces of a vector space R
3
 (excluding the subspace spanned by 

the zero vector, Span{0}).  It can be further extended to a 4x4 case, and then to the 

general case of nxn matrices.  

This is an open-ended task with no learnt procedures to accomplish it. The routine 

tasks ask students to determine if a set of vectors is linearly dependent or independent 

by applying the definition or theorems presented in the course. In part (a1) of the task, 

the given and the question are reversed. Zazkis and Hazzan claim that ‘such 

“inversion” usually presents a greater challenge for students than a standard situation’ 

(1999, p.433). To complete Task (a1) students have to adjust their prior experiences in 

order to construct a set of three linearly dependent vectors in R
3
, viewed as columns of 

a 3x3 matrix A. 

RESULTS: LINEAR DEPENDENCE AND LINEAR INDEPENDENCE 

The two concepts of linear dependence and independence are closely connected. To 

have a solid understanding of one of them involves having understanding of the other. 

I first present the summary of students’ responses for constructing matrix A with 

linearly dependent columns, and then use APOS theoretical framework to analyze 

students’ understanding of linear (in)dependence. 

Constructing matrix A with linearly dependent columns 

In Task (a1) the students were required to give an example of three linearly dependent 

vectors represented as a 3x3 matrix with nonzero real entries. Table 1 presents the 

summary of different approaches used to complete this part of the task. The total 

frequencies exceed the number of participants as some students provided two 

examples for the task. Although all but 6% of the students constructed correct 

examples, their methods indicate different levels of understanding.  

The responses to the remaining parts of the task depended on the construction of a 

matrix A. The results and analysis of these remaining parts are presented with 

examples of students’ work below.  

Linear dependence as action 

For students using a guess-and-check strategy the linear dependence was concluded as 

an outcome of an action performed on a chosen 3x3 matrix A. To complete Task (a1), 

these students had to pick 9 numbers to perform a set of operations on these numbers 

getting a certain result, in this case, at least one zero row in the modified form of A. 

This is a consequence of the condition for the columns of a matrix to be linearly 

dependent. These students had to go through calculations explicitly to verify that their 

example satisfied the requirement of the task.  
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Table 1: Constructing 3x3 matrix A with linearly dependent columns 

Method Examples Frequency of 

occurrence 

Guess-and-Check 

method A =

















763

152

241

→

















363

152

241

→

















063

152

241

  

17% 

Rows method: same 

rows, one row multiple 

of another row 

A =

















152

152

321

; or A =

















−−

2932

578

964

 

23% 

Echelon method: start 

with echelon form U of 

A 

U =

















000

110

101

 → ++→ 1233 RRRR

















211

110

101

 

 → +→

+→

322

311

RRR

RRR

 

















211

321

312

= A 

5% 

Identical columns 

method:  

[a1 a1 a1] where a1 has 

nonzero real entries 

A=

















333

222

111

; or A=

















111

111

111

 

8% 

Multiple columns 

method: two columns 

are multiples of the 

first one - [a1 ca1 da1] 

where a1 has nonzero 

real entries and c and 

d are both nonzero 

real numbers 

A = [a1  3a1  9a1] =

















931

931

931

; 

A = [a1  2a1  3a1] =

















1284

642

963

 

19% 
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Two multiple columns 

method: two identical 

columns or two 

columns multiples of 

each other and the 

third column having 

any nonzero real 

entries: [a1 ca1 a3] 

A =

















433

222

111

; or A = [a1  2a1  a3] =

















184

663

542

 

21% 

Linear combination 

method: any two 

columns, a1 and a2, 

having nonzero real 

entries and a3 = ca1 + 

da2 

A = [a1  a2   a1+a2] =

















853

642

431

; 

A = [a1  a2    2a1+ ( )21− a2] =

















−

−

23121

321

121

 

18% 

 

Linear dependence as process 

Applying the APOS theoretical framework, students are operating with the process 

conception of linear dependence when they construct a matrix A emphasizing the 

relations between the rows. They may know that in order for the columns of A to be 

linearly dependent an echelon form of a matrix has to have a zero row. The row 

reduction process is an intended action in this case. It is performed mentally, and then 

reversed to generate a required matrix.  

There is an intermediate step that links the linear dependence of columns of a matrix 

and its echelon form having a zero row. The definition of linear dependence of a set of 

vectors is given in terms of a solution to a vector equation. That is, a set of vectors {v1, 

…, vn} is linearly dependent if the vector equation, c1v1 + … + cnvn = 0 has a nontrivial 

solution. The solution set of this vector equation corresponds to the solution set of a 

matrix equation Ax = 0 having the vi’s as columns which in turn corresponds to the 

solution set of the system of linear equations whose augmented matrix is [A 0]. In the 

prior instruction it was shown that the linear system Ax = 0 has a nontrivial solution if it 

has free variables, and this can be inferred from an echelon form of A. Thus, some 

students formed the connection: linear dependence ↔ free variables ↔ zero row in 

echelon form. As a result some examples were justified with the following statements: 

‘a linearly dependent matrix is a matrix with free variables’, ‘columns of A are linearly 

dependent since x3 is free variable which implies Ax = 0 has not only trivial solution’, 

or ‘when the forms are reduced into reduced echelon form, the linearly dependent 

matrix has a free variable x3; however, the linearly independent doesn’t – it has a 

unique solution’. 
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Only 50% of the students completed both parts of the task, with 63% of incorrect 

responses to Task (b). In the majority of incorrect responses students ignored the 

different structures of linear dependence relations between vectors. They either used 

the same matrix A in both parts of the task or a matrix A having the same linear 

dependence relations between columns. Then if the students changed the correct 

number of entries in Task (a), their response to Task (b) was incorrect. For instance, 

one student constructed matrix A for both parts with the same dependence relation 

between columns, a3 in Span{a1, a2}, and changed 1 entry in the first part but 3 entries 

in the second part.  

Linear dependence as object 

The row reduction process is central to linear algebra. It is an essential tool, an 

algorithm that allows students to compute concrete solutions to elementary linear 

algebra problems. However, encapsulation of linear dependence as an object requires a 

movement beyond the outcome of actual or intended procedures of row reduction 

toward a conceptual understanding of the structure of linear dependence relations in a 

set of vectors.  

An indication of the construction of linear dependence as an object is demonstrated 

when students emphasize the relation between vectors, when they use the linear 

combination method to construct their examples of three linearly dependent vectors. In 

the linear combination method, there could be recognized different levels of generality 

for constructing an example. Either students gave a specific example of a matrix with a 

linear dependence relations between columns easily identified, as can be seen in Table 

1, or they identified a general strategy for constructing a class of 3x3 matrices with 

linearly dependent columns. For example, Amy wrote: ‘to be linearly dependent, at 

least one of the columns of a matrix A has to be a linear combination of the others … 

x1a1 + x2a2 + x3a3 = 0 with weights not all zero. Pick a1 and a2. Then for a1, a2, a3 to be 

linearly independent, a3 has to be a linear combination of a1 and a2. So, let a3 = a1 + a2’. 

In the latter case, students applied the property that if u and v are linearly independent 

vectors in R
n
, then the set of three vectors {u, v, w} is linearly dependent if and only if 

w is in Span{u, v} (i.e. w is a linear combination of u and v). 

During clinical interviews, students were able to move from the process understanding 

of linear dependence to the object level. Initially, both Anna and Leon used matrix A 

with the same linear dependence relation between columns to complete Task (b). They 

were changing different number of entries but knew that some changes were 

unnecessary. 

Working through this task helped students understand the connection between the 

linear dependence relations, the geometric interpretation, and the minimum number of 

entries needed to change: 

Leon: …actually, I think to make two changes is minimum, because all three vectors are 
linearly dependent to one another. Changing one will not change the relationship 
overall. You will still have at least two linearly dependent vectors. So can I draw 
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from that with three linearly dependent vectors you need two changes and with 
only two linearly dependent vectors you only need one change. 

Anna even attempted to generalize her strategy for an nxn case: 

Anna: First, if my vectors are the same it’s going to take more than one step to make them 
linearly independent. But if two of the vectors are different and the last one is the 
same as one of the other ones, I just need to change the leading entry number in that 
matrix; so when I row reduce it, I have an identity matrix…If I have an n by n 
matrix, and I have {v1, …, vn-1} and then I have 2v1. This one vector is twice v1, or 
three times v1, just to keep it general, as my vn. So if I make {v1, …, vn-1} linearly 
independent, and the very last one is cv1 then I need to change only one entry. 

Object conception of linear dependence relation includes mastery of all possible 

characterizations of a linearly dependent set of vectors, in particular, the ability to 

recognize the possible ways to alter a set in order to obtain a linearly independent set. 

In Task: Linear (in)dependence, encapsulation of linear dependence as an object 

includes viewing a matrix as a set of column vectors, not as discrete entries that have 

certain values after performing algebraic manipulations. The latter perspective inhibits 

students’ geometric interpretation of the span of columns, because the structure of 

linear dependence relations is not visible. Thus, the students that correctly completed 

both parts of the task might be operating with the object conception of linear 

dependence.  

CONCLUSION 

In general, example-generation tasks provide a view of an individual’s schema of basic 

linear algebra concepts. Through the construction process and students’ examples we 

see the relationships between the different concepts. Task: Linear (in)dependence 

revealed that the connections linear dependence ↔ free variables / pivot positions / 

zero row in echelon form, and linear independence ↔ no free variables / vectors not 

multiples of each other are strong in students’ schema.  

Learners’ responses to Task: Linear (in)dependence showed that many students treat 

linear dependence as a process. They think of linear dependence in reference to the row 

reduction procedure. Some students connected linear dependence to the homogeneous 

linear system Ax = 0 having free variables that in turn corresponds to the nxn matrix A 

having a zero row in an echelon form. Other students linked the linear independence of 

vectors to a homogeneous linear system having only basic variables and therefore n 

pivot positions. However, few students considered the different structures of the linear 

dependence relations.  

Even though geometric representation helps in visualizing the concepts, for some 

students geometric and algebraic representations seem completely detached. This can 

be seen in students’ attempts to provide a geometric interpretation of the span of the 

columns of a matrix. There was a common confusion of the span of the columns of A 

with the solution set of Ax = 0. Instead of providing a geometric interpretation of the 

span of the columns of A, some students gave a geometric interpretation of the solution 

set of the homogeneous system Ax = 0.   
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The tasks soliciting learner-generated examples were developed in this research for the 

purpose of data collection. However, these tasks are also effective pedagogical tools 

for assessment and construction of mathematical knowledge, and can contribute to the 

learning process. Part of the power of Task: Linear (in)dependence is that it anticipates 

the concept of rank, long before students are exposed to it. In playing with the 

examples (assigned after only two weeks of classes), students develop their intuition 

about what linear (in)dependence “really means”. The students may not be able to 

articulate why the second example works differently from the first, but they are starting 

to develop a “feel” for the difference. This task can be further extended to higher 

dimensional vector spaces.  

It is hoped that by examining students’ learning, the data collected can lead to teaching 

strategies, which will help students expand their example spaces of mathematical 

concepts and broaden their concept images/schemas. It is proposed that further studies 

could discuss the design and implementation of example-generation tasks intended 

specifically as instructional strategies, and evaluate their effectiveness.  
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INFORMAL CONCEPTIONS OF DISTRIBUTION HELD BY 

ELEMENTARY PRESERVICE TEACHERS 

Daniel L. Canada 

Eastern Washington University 

 

Relatively little research on the distributional thinking has been published, although 

there has been research on constituent aspects of distributions such as averages and 

variation. Using these constituent aspects as parts of an conceptual framework, this 

paper examines how elementary preservice teachers (EPSTs) reason distributionally 

as they consider graphs of two data sets having identical means but different spreads. 

Results show that the subjects who reasoned distributionally by considering both 

averages as well as variability in the data were likelier to see the data sets as 

fundamentally different despite the identical means used in the task. 

INTRODUCTION 

The purpose of this paper is to report on research describing the conceptions of 

distribution held by elementary preservice teachers in response to a task involving a 

comparison of two data sets.  The two data sets were presented in the form of stacked 

dot plots, and two aspects of statistical reasoning germane to the task were a 

consideration of the average and variation of the two distributions. While research has 

uncovered different ways that people think in regards to measures of central tendency 

(Mokros & Russell, 1995; Watson & Moritz, 2000), fewer studies has been done on 

how people coordinate averages and variation when comparing distributions. Of 

particular interest was the role that variation, or variability in data, played in the 

subjects’ conceptions of distribution. This interest stems from the primacy that 

variation holds within the discipline of statistics (Wild & Pfannkuch; 1999). 

Furthermore, although precollege students have been the focus for many researchers 

interested in statistical reasoning, relatively less attention has been paid to the 

statistical thinking of the teachers of those students. Even less prevalent has been 

published research on how preservice teachers reason statistically (Makar & Canada, 

2005). Therefore, this study addresses the following research question: What are the 

informal conceptions of distribution held by EPSTs as they compare two data sets? 

After describing some related research concerning the aspects of distributional 

reasoning used in the analytic framework, the methodology for the study will be 

explicated. Then, results to the research question will be presented, followed by a 

discussion and implications for future research and teacher training programs. 

CONCEPTUAL FRAMEWORK 

The key elements comprising the conceptual framework for looking at distributional 

reasoning are a consideration both aspects of center (average) and variation, which 
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implies taking an aggregate view of data as opposed to considering individual data 

elements (Konold & Higgins, 2002). Coordinating these two aspects is what enables a 

richer picture of a distribution to emerge (Mellissinos, 1999; Shaughnessy, Ciancetta, 

& Canada, 2004; Makar & Canada, 2005).     

For example, Shaughnessy and Pfannkuch (2002) found that using data sets for the Old 

Faithful geyser to predict wait-times between eruptions provided an excellent context 

for highlighting the complementary roles of centers and variation in statistical analysis. 

The question they posed to high school students was about how long one should expect 

to wait between eruptions of Old Faithful. At first, many students just made an initial 

prediction based on measures of central tendency (such as the mean or median), which 

also disregards the variability in the distribution. Shaughnessy and Pfannkuch (2002) 

point out that “students who attend to the variability in the data are much more likely to 

predict a range of outcomes or an interval for the wait time for Old Faithful... rather 

than a single value” (p. 257). 

Similarly, Shaughnessy, Ciancetta, Best, and Canada (2004) investigated how middle 

and secondary school students compared distributions using a task very similar to the 

task used in the current study reported by this paper. Given two data sets with identical 

means and medians, subjects showed how they reasoned about averages and variation, 

with higher levels of distributional reasoning attributed to those responses that 

conflated both components of centers and spread. The researchers (Shaughnessy et. al., 

2004) found that subjects’ conceptions included the notion of “variability as extremes 

or possible outliers; variability as spread; variability in the heights of the columns in 

the stacked dot plots; variability in the shape of the dispersion around center; and to a 

lesser extent, variability as distance or difference from expectation” (p. 29).  Their 

findings and recommendations echoed that of Mellissinos (1999), who stressed that 

although many educators promote the mean as representative of a distribution “the 

concept of distribution relies heavily on the notion of variability, or spread” (p. 1).  

Thus, recognizing the importance of getting students to attend to both aspects of 

average as well as variation when investigating distributional reasoning, these two 

aspects helped inform not only the task creation for this research but also the lens for 

analysis of the EPSTs’ responses. 

METHODOLOGY 

The task chosen to look at EPSTs’ thinking about distribution when comparing data 

sets was called the Train Times task, and was motivated by a similar tasks initially used 

in previous research (e.g. Shaughnessy et. al., 2004; Canada, 2006). The task scenario 

describes two trains, the EastBound and WestBound, which run between the cities of 

Hillsboro and Gresham along parallel tracks. For 15 different days (and at different 

times of day), data is gathered for how long the trip takes on each of the trains. The 

times for each of these train trips are rounded to the nearest 5 seconds and are presented 

in Figure 1.  
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 Figure 1: The graphs used in the Train Time task 

The task was deliberately constructed so that the EastBound and WestBound train 

times have the same means, yet different amounts of variation are apparent in the 

graphs. As a part of the task scenario, subjects were told that the Transportation 

Department was deliberating whether or not one train was more reliable than the other. 

Subjects were whether they agreed with a hypothetical argument that there was “no 

real difference between the two trains because the data have the same means”, and to 

explain their reasoning. This methodology follows that of Watson (2000), where 

subjects are asked to react to a common line of reasoning. A similar technique has been 

used in other research on statistical thinking (e.g. Shaughnessy et. al., 2004; Canada, 

2006). Would subjects be persuaded by the hypothetical argument of “no real 

difference” in times because of the identical means? Would they argue on the strength 

of the different modes, which are often a visual attractor for statistical novices 

reasoning about data presented in stacked dot plots? Or would they attend to the 

variability in the data, and if so, how would they articulate their arguments?  The 

subjects were EPSTs who took a ten-week course at a university in the northwestern 

United States designed to give prospective teachers a mathematics foundation in 

geometry and probability and statistics. Virtually none of the EPSTs expressed a direct 

recall of ever having had any prior formal instruction in probability and statistics, 

although their earlier education at a precollege level may well have included these 

topics. Early in the course, and prior to beginning instruction in probability and 

statistics, subjects were given the Train Times task as a written-response item for 

completion in class. The task was not given as part of a formal evaluation for the course, 

but rather as a way of having the subjects show their informal sense of how they were 

initially thinking. Two sections of the course, taught by the author, were used for 
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gathering data, and a total of fifty-eight written responses were gathered from the 

EPSTs. The task was then discussed in class, and the discussions were videotaped so 

that further student comments could be recorded and transcribed.  

The data, comprised of the written responses and transcriptions of the class discussions, 

was then coded according to the components of conceptual framework which related to 

the distributional aspects of centers and spread. Responses could be coded according to 

whether they included references to centers, or to informal notions of variation, or to 

both. 

RESULTS 

Almost 35% (n = 20) of the EPSTs initially agreed with the hypothetical argument that 

there was “no real difference between the two trains because the data have the same 

means” While it might be expected that subjects who were predisposed to think of the 

mean as the sole or primary summary statistic for a set of data might support the 

hypothetical argument, a careful analysis of the responses showed different degrees to 

which subjects relied on centers and variation in their explanations. Thus, in 

addressing the primary research question (“What are the informal conceptions of 

distribution held by EPSTs as they compare two data sets?”), results are presented first 

according to responses that focused primarily on centers, then primarily on variation. 

Finally, examples of those responses that integrated centers with an informal notion of 

variation are presented as representing a form of distributional reasoning. 

Centers 

Out of all subjects, 24.1% (n = 14) had responses that included what were coded as 

General references to centers, and the exemplars that follow show the initials of the 

subject as well as an (A) or (D) to show whether they initially agreed or disagreed with 

the hypothetical argument of “no real differences” presented in the task scenario: 

SE:    (A) Because the average is the same for both of them 

DW:     (A) Each train had the same average time  

Although it can be presumed that the subjects equate “average” with the mean, the 

General responses for center included no specific language.  

In contrast, the 39.7% of subjects (n = 23) who had Specific references to centers were 

more explicit as far as what they were attending to: 

SG: (A) The “mean” means the average, so both trains do travel for the same     
length of   time 

LT: (D) I would probably go with the mode, because it is the most common 
answer 

RB:  (D) I would go by the median on this one 

Note how subjects LT and RB, in focusing on the mode or median, disagreed with the 

hypothetical argument of “no real difference.” Indeed, although the means for the data 
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sets in Train Times task were identical, the medians and modes differed, and some 

subjects with Specific center responses picked up on these differences: 

CM: (D) The median and modes are not the same, meaning results varied 

LN: (D) The median & mode are different. Because the data is very different in 
its variation 

Here we see CM and LN tying their observations of differences in measures of centers 

to an informal notion of variation. 

Variation 

For the purposes of this research, variation need not be defined in formal terms such as 

a standard deviation (for which these subjects had no working knowledge), but tied to 

the informal descriptions such as those offered by Makar & Canada (2005). In 

particular, the essence of variation is that there are differences in the observations of 

the phenomena of interest Of all subjects, 32.8% (n = 19) gave a more General 

reference to variation: 

CG: (D) Because the data for both are different in variation of time 

TS: (D) The trains could all have different times sporadically 

LR: (D) Because the time patterns are different between the two trains 

Note that in these examples, the theme of differences among data comes out in the 

natural language of the response. Clearly the sense of variation as differences is a naive 

and basic idea, but one that is fundamental and a potentially useful springboard for a 

deeper investigation as to how to describe those differences 

A slightly higher percentage of all subjects, 37.9% (n = 22) had more Specific 

references to variation, and the main motivation for looking at specific constituent 

characteristics of variation came from the related literature on thinking about 

variability in data (e.g. Shaughnessy et. al., 2004; Canada, 2006) These characteristics 

include relative spread, extreme values, and range. For example, consider these two 

exemplars of more Specific reasoning about variation: 

EK: (D) Because looking at the charts, the data is more spread out going 
EastBound than it is going WestBound 

AD: (D) Because the times for the EastBound trains are very spread out while 
the WestBound trains’ times are clustered together. 

Although EK and AD did not capture formal numerical descriptors of variation about a 

mean, they did use informal language to convey an intuitive sense of the relative spread 

of data. Other subjects included variability characteristics in their responses by paying 

attention to extreme values: 

AU: (D) No, because the EastBound has more outliers and is more scattered 

AN: (D) One EastBound train took 59:40 while the longest WestBound train 
took only 59:15, and that is almost a 30 minute difference 

Note how AU shows sensitivity to the presence of outliers, while AN includes 

references to the maximal value in each data set. In addition to Specific characteristics 
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of variation captured by responses suggesting a focus on relative spread or extreme 

values, some responses made explicit connection between both maximum and 

minimum values:  

AU: (D) EastBound has a higher range, from 58”25 to 59:40, & WestBound’s 
smaller range is from 58:45 to 59:15 

DM: (A) The range is 1:15 seconds EastBound and 0:30 seconds WestBound. 

It was interesting to note that even while acknowledging the different ranges, DM still 

chose to agree with the hypothetical argument in the task.  

Distributional Reasoning 

As noted in the previous exemplars, some responses focused more on centers and 

others on informal notions of variation. However, in line with the previous research 

(e.g. Shaughnessy, Ciancetta, Best, & Canada, 2004), responses coded as distributional 

needed to reflect an integration of both centers and variation. Of the total 58 subjects, 

43.1% (n = 25) such responses that reflected distributional reasoning: 

HH: (D) Because the mean is an average, and to get an average you will most 
likely use varying numbers. All the times for the most part on EastBound 
trains are different. Just because the mean is the same doesn’t change that.  

AJ: (D) The data is different, although the average is the same. We can see, for 
example, the difference in consistency of the WestBound train, where the 
times are closer together, and hold nearer to schedule 

AB: (A)The mean is the average of times. BUT, there is a greater spread of 
times on EastBound vs. WestBound . And East mode is lower than West 
mode. 

Note the richness in the exemplars provided above, as subjects integrate center and 

spread in their consideration of the two data sets. We see, for example, how HH 

understands about combining “varying numbers” to get an average. AJ actually lays 

the groundwork for making an informal inference, in the way that the WestBound may 

be to more reliable train because it holds “nearer to schedule” Meanwhile, AB agrees 

with the hypothetical argument of the task, despite apparently taking note of the means 

and commenting on the differences in mode and spread of the data sets. When asked 

further for an explanation of his stance in agreeing, he remarked to the effect that “Still, 

they are basically the same on average”. Such is the power of the mean in many 

peoples’ minds as a way of summarizing data. 

DISCUSSION 

Out of all 58 subjects, 20 (34.5%) initially agreed and 38 (65.5%) disagreed and with 

the hypothetical argument of “no real differences” between the trains. But this research 

is about how EPSTs reason distributionally, and so it was crucial to dig into their 

explanations. The exemplars provided have been intended to show how subject 

responses could reflect a focus on centers, on variation, or on both. Since responses 

could be coded for multiple aspects, including some facets of statistical thinking not 

reported on in this paper, as a final note it is interesting to look at the breakdown of 
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who agreed versus who disagreed with the hypothetical argument based on whose 

responses coded only for centers, or only for variation, or coded for distributional 

reasoning (both centers and variation). Looking strictly within those groups of 

responses, the percentage of those subjects who agreed or disagreed is presented in 

Table 1: 

 

 

 

 

 

Table 1: Support for “no real differences” by type of reasoning 

Again, the percentages in Table 1 are out of the respective numbers of responses falling 

within the given types of reasoning (the numbers do not total 58 because some students 

had explanations that went outside the themes of this paper). Comparing those 

percentages with the total pool of subjects (34.5% agreeing and 65.5% disagreeing), 

several interesting observations can be made. First, while more than half of all subjects 

disagreed, the majority of those subjects who only relied on reasoning about centers 

agreed with the hypothetical argument of “no real differences” Second, the percentage 

of those subjects who only used variation reasoning and disagreed is quite close to the 

percentage of all subjects who disagreed. Third and most important, the subjects whose 

responses reflected distributional reasoning had the highest percentage of 

disagreement with the hypothetical argument.  

CONCLUSION 

This study was guided by the question “What are the informal conceptions of 

distribution held by EPSTs as they compare two data sets?” Although limited to a 

single task that was by nature contrived so as to invite attention to identical means yet 

differing amounts of spread in two data sets, the research suggests that EPSTs do 

reflect on aspects of distributional reasoning, and this paper gives a sense of how those 

aspects manifested themselves in the responses of the subjects. However, just as prior 

research has shown with middle and high school students (e.g. Shaughnessy et. al., 

2004), we also see that EPSTs make more limited comparisons of distributions when 

they focus on centers while not attending to the critical component of variability in data. 

In contrast, the distributional reasoners who attended to both centers as well as 

variation made richer comparisons within the given task.  

While further research is recommend to help discern the most effective ways of 

moving EPSTs toward a deeper understanding of distributions, certainly tasks such as 

the one profiled in this paper provide good first steps in helping universities offer 

opportunities to bolster the conceptions of the preservice teachers they aim to prepare. 

Type of Reasoning (A)gree (D)isagree 

Only Centers   (n = 12)   75.0 %    25.0 % 

Only Variation (n = 16)   31.3 %    68.8 % 

Distributional    (n = 25)   20.0 %    80.0 % 
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In turn, these novice teachers can then promote better statistical reasoning with their 

own students in the schools where they eventually serve. 
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FIRST GRADERS’ STRATEGIES FOR NUMERICAL NOTATION, 

NUMBER READING AND THE NUMBER CONCEPT 

Gabrielle A. Cayton and Bárbara M. Brizuela 

Tufts University, Medford, MA USA 

We have come to accept that children’s appropriation of written numbers is not 

automatic or simple. Studies of children’s use of notation point to different types of 

notational practice (Alvarado, 2002; Brizuela, 2004; Scheuer et. al., 2000; Seron & 

Fayol, 1994). In a recent study (Cayton, 2007) we found that some common strategies 

of children for representing large numbers were correlated with different levels of 

understanding of our base-ten system. In this paper, we explore the connections among 

three representations of the number system, addressing the question: Are there 

differences in how children represent (through production and interpretation): 

numbers in writing; numbers orally; and numbers conceptually? 

RATIONALE AND PAST RESEARCH 

The aim of the study described in this paper was to explore the connections among 

three representations of the number system in children: nonverbal representations, 

representations through the written number system, and representations through the 

oral number system. Past research has usually focused on children’s performance on 

each of these different modes of representation in an isolated way. For instance, 

previous studies (e.g., Fuson & Kwon, 1992; Miura & Okamoto, 1989; Power & Dal 

Martello, 1990; Ross, 1986; Scheuer, 1996; Seron & Fayol, 1994; Sinclair & Scheuer, 

1993) have focused on place value notation, number decomposition, and oral 

numeration. Yet there has been very little work on the correlation of any of these 

aspects with one another.  

More recent research has begun to explore the potential connections among these 

different systems. For example, Scheuer et al (2000) discuss, among others, two 

distinct types of incorrect numerical notation strategies used by children: logogramic 

(writing the entire number literally, such as 100701 for one hundred seventy-one) and 

compacted notation (removing some of the zeros from the logogramic notation while 

still not condensing the number entirely into its conventional form, such as 1071 for 

one hundred seventy-one). Scheuer and her colleagues speculate that perhaps these two 

types of notational strategies stem from different ideas in children about the concept of 

number, yet her study only focuses on written numbers. Other studies explore 

children’s use of notation and point to several different types of notational practice 

possibly linked to stages in the understanding of multi-digit numbers (e.g., Brizuela, 

2004) and possibly linked to stages in the understanding of place value in base-ten (e.g., 

Alvarado, 2002; Brizuela, 2004; Scheuer et al, 2000; Seron & Fayol, 1994). The study 

we described in this paper is novel in that we seek to explore the connections among 

these different—yet fundamentally related—modes of representation. 
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A number of other studies also set the ground for the need to look at children’s 

representation of number across different systems. For instance, Power and Dal 

Martello (1990) conducted a study of Italian second graders taking numerical dictation 

of one, two, three, and four digit numerals with and without internal zeros. Since the 

Italian number words have a similar transparency
1
 to other Romance languages such as 

Spanish as well as to English, findings in this study can be considered relevant to the 

study here being proposed. The second graders in this study correctly annotated all 

numbers below 100, demonstrating that they had both succeeded and mastered the 

number system in this range, making the findings with larger numbers quite 

remarkable. For numbers above 100, Power and Dal Martello (1990) found both 

lexical (such as using a 7 instead of an 8) and syntactical (adding extra zeros, 

improperly arranging numbers, etc.) errors, though the syntactical errors far 

outweighed the lexical, indicating a misunderstanding of the system and not simply a 

mistake on the part of the child. There were also significantly more errors for four-digit 

than three-digit numbers, demonstrating that there are indeed steps in the acquisition of 

the system and it is not simply an “all or nothing” understanding. That is, each number 

range poses new problems or elicits prior problems once again. However, one question 

that arose from Power and Dal Martello’s (1990) study was what role the spoken 

numbers had played in children’s performance. For this purpose, Seron and Fayol 

(1994) devised a follow-up experiment aimed at answering whether the children in the 

Power and Dal Martello (1990) study comprehended correctly the verbal number 

forms and to further understand what role language has in this process. In their study, 

they compared French and Walloon children. French has a very similar numeration 

system to English and Italian, aside from the forms for 70, 80, and 90 that translate to 

sixty-ten, four-twenty, and four-twenty-ten respectively. However, in Wallonia, a 

region of Belgium where French is spoken, the words for 70 and 90 (septante and 

nonante, respectively) mirror those used in English and most Romance languages. Due 

to this small difference in the languages, Seron and Fayol (1994) conducted a similar 

transcoding experiment to Power and Dal Martello (1990) to see if the French and 

Walloon children would have any differences in numerical dictation or understanding 

of the written number system caused by the differences in the oral numeration of each 

language. Seron and Fayol (1994) adopted a longitudinal approach by interviewing 

children at three sessions, each distant by a three-month interval. In these sessions, 

children were asked to both transcribe dictated numerals and create the number values 

from tokens of 1; 10; 100; and 1,000 units. Seron and Fayol (1994) found very similar 

lexical and syntactical errors to Power and Dal Martello (1990) and Scheuer et al 

(2000). Not surprisingly, certain incorrect syntactical responses were seen only among 

French children such as 6018 for “soixante-dix-huit” (seventy-eight) and 42017 for 

“quatre-vingt dix-sept” (ninety-seven). Interestingly, these errors are very similar to 

                                           
1
 Transparency/nontransparency (see Alvarado & Ferreiro, 2002) has to do with the degree to which a number sounds like 

its written form when spoken aloud. For example, in English, 60 is more transparent than 30 since the “six” is clearly 

heard in the pronunciation of the number. Despite this distinction, transparency is still somewhat relative, because, for 

instance, we cannot say that 60 is completely transparent since the “ty” does not sound exactly like “ten” or “zero.” 



Cayton & Brizuela 

PME31―2007 2-83 

those produced by French adult aphasics (DeLoache & Seron, 1982), indicating that 

this is likely an error at the level of processing or comprehension, not an error at the 

stage of production (though we cannot be certain, it is always possible that two 

different sources of error produce the same outcome). The types of tasks at which the 

children from Wallonia excelled versus erred demonstrate that their difficulties in 

transcoding from oral numbers to written numbers were mainly due to the production 

of the written numbers themselves and not a difficulty in understanding what 

numerosity the spoken number referred to. The same cannot be said for French 

children, who produced token arrangements very similar to their transcoding errors. As 

Seron and Fayol (1994) pointed out, it remains to be determined where in the 

functional architecture of number processing the children’s transcoding errors 

originate. Is it the result of inadequate comprehension of the verbal number forms, 

difficulties located at the production stage of written numbers, inadequate 

comprehension of the number system itself, or a conjunction of two or three of those 

possibilities?  

Prior research thus sets the ground for our assumption that connections across 

representational systems are important, and that fully reflecting and understanding the 

nature of these connections is a worthwhile endeavor. However, what remains to be 

understood and answered through the research study we are proposing is: What is the 

nature of these connections? What is a child’s understanding of number and 

numerosity when they either correctly or incorrectly name a number? When they 

correctly or incorrectly write a number? When they correctly or incorrectly build a 

number with tokens or some other tool? 

METHOD 

Participants 

Twenty-seven first grade students (students need to be six years of age by the time they 

begin first grade) were interviewed individually towards the end of their first grade. 

The school these children attend is in an urban suburb of Boston, Massachusetts, in the 

United States of America. The school is ethnically, racially, and socio-economically 

diverse. In addition, the school provides a two-way bilingual education to children.  

Materials and Procedures 

Interviews were carried out as clinical interviews (Piaget, 1965). During the course of 

the interviews, children were presented with the numbers detailed in Table 1. Our goal 

was to be able to explore children’s oral, written, and nonverbal representations of 

number. Our proposal was to access children’s oral representation through their oral 

naming of numbers; their written representation through their writing of numbers; and 

their nonverbal representations through their construction, through tokens, of the 

“value” of the different numbers.  
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Series Number Type 1
st
  2

nd
  3

rd
 4

th
  5

th
  

Series 1 Two digit – 

“transparent” with final 0 

40 60 70 80 90 

Series 2 Two digit – 

nontransparent with final 0 

50 30 20   

Series 3 Two digit – 

transparent without 0 

43 64 79 88 91 

Series 4 Two digit – 

nontransparent without 0 

53 21 19 35 17 

Series 5 Three digit – without 0 127 143 324 465 132 

Series 6 Three digit – internal 0 101 207 301 401 504 

Series 7 Three digit – final 0 300 760 640 430 910 

Series 8 Four digit – without 0 1127 3143 4324 5465 7132 

Series 9 Four digit – X0XX 3064 2053 1019 4035 5091 

Series 10 Four digit – XX0X 2101 3504 1401 4207 1760 

Series 11 Four digit – XXX0 1300 3760 2640 1430 1910 

Table 1: Numbers presented to children in the different tasks (orally, through 

different-valued tokens, or in writing) 

Children were randomly assigned to one of six task orders:  

(1a)  OWTO: Numbers were presented orally by the interviewer, from which the 

child completed the written part of the task. Next, the child completed the token task 

based on his/her own writing, and finally completed the oral task from the tokens. 

(1b)  OTWO: Numbers were presented orally by the interviewer, from which the 

child completed the token task. Next, the child completed the written task based on 

his/her own tokens, and finally completed the oral task from his/her own writing. 

(2a) WOTW: Numbers were presented in written form by the interviewer, from 

which the child completed the oral task. Next, the child completed the token task based 

on his/her own oral forms, and finally completed the written task from his/her own 

tokens. 

(2b) WTOW: Numbers were presented in written form by the interviewer, from 

which the child completed the token task. Next, the child completed the oral task based 

on his/her own token forms, and finally completed the written task from his/her own 

oral form. 

 (3a) TOWT: Numbers were presented in token form by the interviewer, from which 

the child completed the oral task. Next, the child completed the written task based on 

his/her oral forms, and finally completed the token task based on his/her own written 

forms. 

(3b) TWOT: Numbers were presented in token form by the interviewer, from which 

the child completed the written task. Next, the child completed the oral task based on 
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his/her written forms, and finally completed the token task based on his/her own oral 

forms. 

Each of the tasks has three parts: oral, written, and tokens. Each one of these parts has 

both a production and interpretation mode: when numbers are presented in tokens, they 

can be interpreted through writing or through naming orally; when numbers are 

presented in writing, they can be interpreted through construction of tokens or through 

naming orally; when numbers are presented orally, they can be interpreted through 

construction of tokens or through writing. 

Oral part of task: In this part of the task, children were asked to read from a piece of 

paper or from a token composition the numbers in Table 1. Children who correctly 

name the first two numbers in a series were presented with the next series (see each one 

of the rows in Table 1). Children who read at least one number incorrectly in a series 

received 1-3 more numbers until the child’s strategy with that category became 

apparent.  

Written part of task: In this part of the task, every child was asked to write at least two 

numbers from each series. Children who wrote the first two numbers in a series 

conventionally were presented with the next series. Children who wrote at least one 

number incorrectly received 1-3 more numbers in that series until the child’s strategy 

with that series becomes apparent.  

Tokens part of task: This part of the task was designed for the purpose of understanding 

the consistencies/inconsistencies in the child’s understanding of our number system 

without the use of notation. In the object numeracy tasks, children were presented with 

a number of tasks involving the use of tokens of different colors. Tokens were chosen 

based on the work of Nunes Carraher (1985) performing similar tasks in the 

understanding of place value in young children and illiterate adults. The child was told 

that red tokens are worth 1 point, blue tokens are worth 10 points, white tokens are 

worth 100 points, brown tokens are worth 1,000 points, and maroon tokens are worth 

10,000 points. The child was presented with the same numbers as in the previous tasks 

but in token-form and asked how many points he/she has or was asked to compose a 

number with the tokens. Once again, children who correctly composed or recognized 

the first two numbers in a series were presented with the next series. Children who 

named at least one number incorrectly received 1-3 more numbers until the child’s 

strategy with that series became apparent. 

RESULTS 

Our first question was: does the manner in which children were first introduced to the 

numbers (i.e. in writing, orally, through tokens) affect the outcome of their subsequent 

responses? Table 2 shows the number of incorrect answers given in the first step of the 

task, according to their testing condition.  
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Number Series 10-99 100-999 1000-9999 Total 

Oral 

introduction 
0/72 (0%) 18/64 (28%) 39/90 (43%) 57/226 (25%) 

Written 

introduction 
3/75 (4%) 11/59 (19%) 34/75 (45%) 48/209 (23%) 

Token 

introduction 
12/76 (16%) 16/63 (25%) 15/87 (17%) 43/226 (19%) 

Total 15/223 (7%) 45/186 (24%) 88/252 (35%) 148/661 (22%) 

Table 2: Number of errors with first step of task. Frequencies are shown over total 

amount of numbers presented in each task condition 

As can be seen in Table 2, there were more errors as the number series advanced (that 

is, more errors in the thousands than in the hundreds and more errors in the hundreds 

than in the tens). This would be expected as the children have had less previous 

exposure to the numbers as they increased in length. The Oral and Written modes of 

presentation had a higher likelihood of resulting in an initial incorrect answer than the 

Token introduction, as was confirmed with a chi-square test (α=0.01). Thus, the format 

that numbers are presented in does make a difference to children’s subsequent 

production. In our study, children were more likely to make a correct interpretation and 

re-representation of a number in a different mode when the number was initially 

presented to them through tokens and they had to subsequently represent the same 

number either through the written or oral number systems. 

Since the children were producing each representation off of their previous one, we 

wondered if a child who could initially produce an unconventional re-representation of 

a number in a different mode (e.g., re-represent a number presented through tokens 

through the written or oral number systems), could later produce a conventional 

re-representation when asked to use the same mode that the number had initially been 

presented in, even if this occurred later in the task (e.g., correctly re-represent through 

tokens a number that earlier had been presented to them through tokens).  

 First representation incorrect, final 

correct 

First representation incorrect, final 

incorrect 

 10-99 100- 

999 

1000- 

9999 

Total 10-99 100- 

999 

1000- 

9999 

Total 

Oral 

Intro. 

0/0 

(%N/A) 

4/18 

(22%) 

14/39 

(36%) 

18/57 

(32%) 

0/0 

(%N/A) 

14/18 

(78%) 

25/39 

(64%) 

39/57 

(68%) 

Written 

Intro. 

3/3 

(100%) 

9/11 

(82%) 

21/34 

(62%) 

33/48 

(69%) 

0/3 

(0%) 

2/11 

(18%) 

13/34 

(38%) 

15/48 

(31%) 

Token 0/12 1/16 1/15 2/43 12/12 15/16 14/15 41/43 
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Intro. (0%) (6%) (7%) (5%) (100%) (94%) (93%) (95%) 

Total 3/15 

(20%) 

14/45 

(31%) 

36/88 

(41%) 

53/148 

(36%) 

12/15 

(80%) 

31/45 

(69%) 

52/88 

(59%) 

95/148 

(64%) 

Table 3: Ability to recover from initial error among different conditions. Frequencies 

are shown over total amount of first incorrect representations. All differences in totals 

are significant (α=0.01). 

In Table 3 we see that when the numbers were first presented through tokens, the 

children were the least likely to recover from the error in subsequent productions. Of 

43 errors in the first representation when presented with tokens, there were only two 

instances (5%) of the final representation matching the initial production. The initial 

oral presentation had a slightly better outcome with 18 of 57 (32%) representations 

recovering from initial error. Interestingly, when initially presented with a written 

number, in 33 of 48 cases, (69%) children were able to recover and produce the correct 

written number in the end.  

While it may seem that this is counter to the results described in Table 2, where we 

found that errors from the written and oral production were more likely than token 

production, we argue that these findings are complementary: while they have less 

difficulties with their token productions and interpretations, children are still trying to 

figure out details of written and oral representations. Some types of initial 

representations, such as tokens, may be more helpful than others for children to 

develop their own representations of number. In addition, we find that children are able 

to remember and produce a correct written number representation despite a lack of 

ability to produce the number orally or compose its value through tokens.  

DISCUSSION 

These results elicit some essential questions as to the focus of early mathematics 

curricula in the United States, where children are typically taught to write numbers 

through repeated practice and mathematics testing is typically done on paper. It would 

appear from the above results that children are internalizing the memorization of 

written numbers without mapping them onto their nonverbal representations. This 

allows for good recall of written numbers while simultaneously permitting a gap in the 

bridge between the written and the nonverbal. 

In the reverse situation, many children are able to map a nonverbal representation onto 

a spoken or written number; yet with numbers that they are not yet able to map, they 

have no method of retrieving the number once the focus is centered on attempting a 

written and/or verbal form. This could prove to be an obstacle in conceptual problem 

solving. 

The need for further studies examining methods of transfer from one representational 

mode to another is evident. We intend to follow these same children into the second 

grade to examine whether the transfer has improved with exposure to larger numbers 



Cayton & Brizuela 

PME31―2007 2-88 

and more arithmetical practices which require more than simply retrieval of a written 

number form. We also intend to analyse the specific types of errors made by children in 

their different representations, orally, in writing, and through tokens. 
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AN EXPLORATORY STUDY OF ELEMENTARY BEGINNING 

MATHEMATICS TEACHER EFFICACY 

Chang, Y. L. and  Wu, S. C. 

MingDao University / National Chiayi University 

 

Referring to the significant factors affecting teacher quality, “teacher efficacy” 

deserves to be in the heart of this dilemmatic evolution.  The purpose of this study 

aimed to examine beginning teachers’ sense of efficacy in elementary schools, as well 

as its influential factors.  Beginning teachers whose background were and were not in 

mathematics and science were compared to explore the differences of their teacher 

efficacy. According to research findings, we should devote all efforts to establish a 

positive and effective learning organization in order to promote their teacher efficacy 

internally, externally, and promptly starting from the beginning year. 

INTRODUCTION 

The significance of enhancing teacher quality becomes the core in the process of global 

educational reform, where teacher preparation programs must take this responsibility 

(e.g., Holmes Group, 1995; Ministry of Education [MOE], Taiwan, 2001; MOE, 

Taiwan, 2004; National Research Council [NRC], 2001; Wright et al., 1997; Wu, 

2004).  The integrity and implementation of the teacher education program had 

actually a great influence on a teacher’s acquisition of subject matter knowledge and 

instructional strategy, and even more on teacher efficacy (Chang & Wu, 2006).  In 

another word, teacher efficacy was considered as not only the key indicator on 

examining the appropriateness and adequacy of a teacher’s personal instructional 

readiness (e.g. Allinder, 1995; Ashton & Webb, 1986; Denham & Michael, 1981; 

Rosenholtz, 1989) but also a warning of showing critical problems the teacher 

education program faced and orienting future directions of its reform movement 

(Chang, 2003; Chang & Wu, 2006).  However, most studies conducted in Taiwan (e.g. 

Chu-Chen, 2002; Hong, 2002) focused on investigating elementary teacher efficacy 

“quantitatively” and “generally” (i.e. not specifically for certain subject areas), few of 

them chose single subject area such as mathematics for their examinations.  

Consequently, understanding elementary mathematics teacher efficacy under the 

circumstance of executing practical instruction, the processing trend of their efficacy 

change, and factors influencing their efficacy qualitatively would be essential and 

helpful at the current stage.  Especially for those beginning teachers who lacked 

practical teaching experiences, how would they apply theories learned from the 

pre-service training program to instructional problems they faced on-site?  Would the 

development of their efficacy be influenced while confronting struggles between 

theories and practices?  What would be the trend of their efficacy development and 

change?  These critical issues should be explored qualitatively and deeply. 
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According to the report of attending “Trends in Mathematics and Science Study 2003 

(TIMSS 2003)” from the National Science Council [NSC] (2004), Taiwanese 

elementary students ranked the fourth position in mathematics.  However, their 

performance had a significantly difference from those at the first (Singapore) and the 

second (Hong Kong) positions.  Further, comparing to the result of TIMSS 1999, there 

were 16 percentage increases in the response of students who disagreed “I like 

mathematics”.  This finding showed that more and more students join the train of 

“lacking interests in mathematics”.  Why did our students’ achievement and interest 

step back?  What kind of role did teacher efficacy play in affecting students’ 

achievement and interest?  

“Beginning with research in the 1970s (e.g., Armor et al., 1976; Berman et al., 1977), 

teacher efficacy was first conceptualized as teachers’ general capacity to influence 

student performance” (Allinder, 1995, p.247).  Since then, the concept of teacher’s 

sense of efficacy has developed continuously and currently is discussed relevant to 

Albert Bandura’s (1977) theory of self-efficacy, which indicates the significance of 

teachers’ beliefs in their own capabilities in relation to the effects of student learning 

and achievement.  Ashton (1985) also stated that teacher efficacy, that is, “their belief 

in their ability to have a positive effect on student learning” (p.142).  Several studies 

further reported, “Teacher efficacy has been identified as a variable accounting for 

individual differences in teaching effectiveness” (Gibson & Dembo, 1984, p. 569) and 

had a strong relationship with student learning and achievement (Allinder, 1995; 

Gibson & Dembo, 1984).  Consequently, in order to better understand the reasons of 

the reduction in mathematical achievement and interest as well as finding out ways of 

improving both teaching and learning quality, an in-depth processing study would be 

the best choice at the moment.  

PURPOSE AND METHOD 

The purpose of this study aimed to examine beginning teachers’ sense of efficacy in 

elementary schools, as well as its influential factors.  Beginning teachers whose 

background were and were not in mathematics and science were compared to explore 

the differences of their teacher efficacy.  A mixed methods design was employed in 

this processing study.  “Participant Main Survey” and “Mathematics Teaching 

Efficacy Beliefs Instruments (MTEBI Chinese version, Chang, 2003)” were used as 

the instruments of the quantitative part of this research.  Participants were 64 beginning 

elementary mathematics teachers in Taichung, Taiwan.  Pre- and post-tests were 

administered to obtain their efficacy ratings quantitatively.  In the qualitative part, 

beginning teachers with and without background in mathematics and science were 

selected purposefully as participants according to their efficacy ratings of pre-tests.  

They were then divided into three groups: high, medium, and low; three teachers were 

randomly selected from each group.  All together, six beginning mathematics teachers 

participated in the qualitative part of this study.  Influential factors to beginning 

teachers’ sense of efficacy were identified through interviews, recordings, 

observations, and researchers’ reflection notes for exploring practical strategies to 
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improve their efficacy.  The analysis in context strategy was employed for reaching the 

research objectives, which was the integration of descriptive and inferential statistical 

analyses (i.e. ANCOVA) and the qualitative analysis. 

FINDING AND DISCUSSION 

Quantitative teacher efficacy comparison 

Findings of this study were reported in two parts.  For the quantitative part, there were 

18 elementary beginning mathematics teachers with mathematics and science (M&S) 

background and 46 without mathematics and science background.  In regard to the 

pre-test, beginning mathematics teachers with M&S background had a significantly 

superior rating in both cognitive dimensions of Personal Mathematics Teaching 

Efficacy (PMTE) and Personal Science Teaching Efficacy (PSTE).  After receiving 

four-years of training, beginning mathematics teachers with M&S had more 

confidence in their own teaching abilities than those who did not specialize in either 

mathematics or science.  With regard to the post-test (one year later), beginning 

mathematics teachers with M&S background still scored significantly higher in both 

PMTE and PSTE than those without M&S background.  In order to obtain a better 

understating of the differences between these two groups (i.e. with and without M&S 

background) in the performance of PMTE and MTOE, a one-way analysis of 

co-variance (ANCOVA) was conducted to determine the effects of the two 

backgrounds on the efficacy scores.  After eliminating the differences in the pre-test, 

beginning mathematics teachers with M&S background still scored significantly 

superior in both PMTE and PSTE in the post-test than those without M&S background.  

Table 1 showed the comparative statistics of PMTE and MTOE.   

Program  Value Sig. Mean Differences
1
 

Pre-test PMTE t=2.808 p<.01 3.379 

 MTOE t=3.393 p<.001 2.297 

Post-test PMTE t=4.947 p<.001 5.461 

 MTOE t=4.958 p<.001 4.292 

ANCOVA PMTE F=19.770 p<.001  

 MTOE F=18.759 p<.001  

Note: 1. Mean Differences＝Mean with M&S－Mean without M&S 

Table 1: Comparative Statistics of PMTE and MTOE 

However, considering the average mean scores of PMTE and MTOE, those beginning 

mathematics teachers without M&S background only had approximately 71.94 percent 

of confidence (post-test) in their own teaching abilities.  This information provided a 

warning for all teacher training programs: If these beginning teachers believed they 

were not ready to assume the teaching responsibility, teaching quality would be 

potentially jeopardized.  Moreover, they did not have adequate confidence (only 
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72.83%) in providing efficient teaching in the classroom either.  Thus, even though 

they believed effective teaching was vital for students’ learning and achievement in 

mathematics, the quality of teaching and learning could still not be assured.  These 

findings just matched the results of previous studies, such as Ball (1990), Chu-Chen 

(2002), Hong (2002), and Chang (2003).  As Gibson and Dembo (1984) stated, 

teachers with high efficacy should “persist longer, provide a greater academic focus in 

the classroom, and exhibit different types of feedback than teachers’ who have lower 

expectations concerning their ability to influence student learning” (p.570).  Further, 

“when it comes to the education of our children…failure is not an option!” said 

President George W. Bush (2001).  Accordingly, since there was no time for waiting 

and no room for going back and regret, how to enhance beginning mathematics 

teachers’ efficacy quickly and effectively for the purpose of providing quality teaching 

process and learning environment would be urgent and critical task for all in-service 

training programs.   

Influential Factors of Teacher Efficacy 

For the qualitative part, 6 beginning mathematics teachers were selected for 

discovering influential factors of their teacher efficacy.  Table 2 and 3 showed their 

background information.  According to the qualitative findings, two categories of 

factors that influenced the change of their teacher efficacy were generalized, teacher’s 

teaching belief and practical instruction (internal factor) and peer interaction and 

administrative support (external factor).  The internal factor had three sub-categories: 

mathematics background knowledge and previous experience, instructional belief and 

action, and teacher-student interaction.  The external factor was divided into three 

sub-categories too: peer interaction, administrative support, and teaching resource. 

 Teacher 
Efficacy 

Sex Grade 
Level 

Major Pre-test(total score) 
(average: 80.61) 

M1 High M 6 Science Education 86 

M2 Middle M 3 Math Education 80 

M3 Low M 3 Math Education 71 

Table 2: Information of Teachers with M&S Background 

 Teacher 
Efficacy 

Sex Grade 
Level 

Major Pre-test(total score) 
(average: 74.93) 

N1 High F 5 Food Science 83 

N2 Middle F 5 Music Education 74 

N3 Low F 4 Art Education 68 

Table 3: Information of Teachers without M&S Background 

A. Internal Factor 

First of all, the findings indicated that beginning mathematics teachers had inadequate 

mathematical background knowledge and practical experience before they entered the 
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classroom.  This inadequacy led to several obstacles, such as the difficulty in preparing 

the lessons, mistakes made in the teaching process, and low teacher efficacy.  For 

example, when students proposed a difficult question, teachers with low efficacy 

usually could not decide how to deal with this situation.  Same conditions happened 

while students applied various strategies to solve the problem that was different from 

the strategy used by the teacher.  What should the teacher do?  Should s/he explain and 

present every strategy that could solve the problem or just ignore it?  This dilemma 

would definitely resulted in a inadequate and ineffective instruction and learning.  As 

Allinder (1995) indicated, “Teachers with high personal efficacy and high teaching 

efficacy increased end-of-year goals more often for their students … Teachers with 

high personal efficacy effected significantly greater growth” (p. 247).  While thinking 

how to promote mathematical teaching outcomes, educators should consider deeply 

how to increase beginning mathematics teacher efficacy first. 

Secondly, beginning mathematics teachers who had low efficacy tended to have 

insufficient instructional strategy and bad teacher-student interaction.  They usually 

did not know how to propose questions and guide the classroom discussion.  

Consequently, they mostly used “lecture” while teaching.  Even if they had a 

discussion, it was always ineffective.  This situation led to not only decrease their 

teacher efficacy but also reduce students’ learning interests and motivations, as well as 

less teacher-student interaction.  This finding corresponded with Czerniak’s (1990) 

opinion: Teachers with a high sense of efficacy have been found to be more likely to 

apply inquiry and student-centered teaching strategies, while low efficacious teachers 

are more likely to use teacher-centered strategies, e.g. lecture and reading from the 

textbook.  Therefore, teacher efficacy did play a significant role in considering how to 

improve the quality of teaching, and was one reasonably important part of learning 

quality.  Only if the teacher efficacy were increased, students’ interests in learning 

mathematics and their active learning habits would be promoted effectively. 

Another internal sub-category was techniques applied for classroom management.  In 

this study, beginning mathematics teachers with low efficacy were likely to spend a 

great deal of time in managing the classroom order.  They often felt powerless and 

pressured, which led to an unsuccessful teaching.  In fact, employing body language 

and specific movements appropriately could keep students’ attention to the instruction 

and cultivate positive agreements between the teacher and students simultaneously.  

Thus, providing relative information of classroom management would complement the 

instructional strategies and teacher-student interactions effectively for enhancing both 

teaching and learning quality. 

B. External Factor 

All six beginning teachers mentioned that they felt more comfortable and confident in 

preparing or implementing their instruction once receiving active care and assistance 

from experienced teachers or teachers of the same grade level within the school.  

Several studies (e.g. Piaget, 1970; Rogoff, 1990; Saxe, Gearnart, & Guberman, 1987) 

indicated that these experience sharing and encouragements were so helpful that they 
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learned a lot and felt full of enthusiasm to keep going forward.  However, they all 

complained of the inadequacy of the sharing and encouragement environment.  

Consequently, how to manage the working environment within one elementary school, 

build up the opportunity of cooperative learning among all teachers, and promote the 

interchange of instructional knowledge and experience would be crucial to assist 

beginning mathematics teachers’ professional development.  Further, the school 

administrators should rethink their management belief and strategy for the purpose of 

establish an effective learning organization for all teachers (Borko, 2004), where they 

could learn from each other efficiently and grow together professionally. 

Moreover, all six teachers indicated that the school administrative level excessively 

interfere their teaching in the classroom.  This interference worsened the 

communication channel and led to an unfavourable relationship that became another 

external factor of the decrease of teacher efficacy.  In addition, beginning teachers 

were often assigned to participate in competitions within or outside of the school that 

were not relevant to their major or the subject they taught.  They had to spend more 

time for these extra tasks and resulted in less time for preparing their own teaching in 

the classroom.  Consequently, instead of giving extra interferences and duties, the 

school administrative level should reconsider what realistic supports should be 

provided for beginning teachers in order to assist them to enhance their teacher 

efficacy and focus on their own teaching. 

CONCLUSION 

According to the findings of this study, beginning mathematics teachers who majored 

in mathematics and science education had a significantly higher increase in their 

efficacy ratings than those who did not major in mathematics and science both at the 

beginning and the end of the first year.  Also, beginning mathematics teachers who 

majored in mathematics and science education had a significantly higher increase in 

both personal teaching efficacy and teaching outcome expectancy than those who did 

not major in mathematics and science.  Further, two categories of factors found in this 

study influencing beginning mathematics teacher efficacy included: teacher’s teaching 

belief and practical instruction (internal factor) and peer interaction and administrative 

support (external factor).  As Hermanowicz (1966) and Ladd (1966) stated, “Teachers 

repeatedly have indicated that their teacher training did not prepare them to be 

effective teachers.  Many have made suggestions for improving teacher education” (p. 

53).  Benz et al. (1992) further confirmed their opinion 26 years later.  Especially for 

those mathematics beginning teachers, under the condition of having low teacher 

efficacy and inadequate readiness in teaching, how to assist them in regard to their 

belief, confidence, and practical instruction would be the first task of teacher 

professional development.  Accordingly, as teacher educators, we should reflect from 

these previous recommendations and research findings, and further devote all efforts to 

establish a positive and effective learning organization in order to promote their 

teacher efficacy promptly starting from the beginning year. 
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PRESERVICE SECONDARY MATHEMATICS TEACHERS’ 

KNOWLEDGE AND INQUIRY TEACHING APPROACHES 

Olive Chapman 

University of Calgary 

 

This paper discusses the nature and role of preservice secondary mathematics 

teachers’ knowledge that supports their use of inquiry approaches during their 

practicum teaching. It highlights how four categories of teachers’ knowledge and, 

more importantly, the connectedness among them based on a common theme 

influenced the preservice teachers’ use of inquiry approaches and their ability to 

transform pedagogical theory to practice. The paper also addresses the importance of 

learning experiences in teacher education that treat these domains of teacher 

knowledge in an integrated way within classroom-based contextual situations in order 

to facilitate the development of an appropriate, usable network of knowledge.  

This study investigated the nature and role of preservice secondary mathematics 

teachers’ knowledge that supported their use of inquiry approaches during their 

practicum teaching. It is part of an ongoing four-year longitudinal study of beginning 

secondary mathematics teachers’ growth. 

RELATED LITERATURE 

An inquiry perspective of teaching is considered to be effective to facilitate students’ 

development of mathematics understanding and mathematics thinking. In inquiry 

classrooms, students are expected to construct mathematical meaning through 

reasoning, communicating, exploring, and collaborating with peers and the teacher 

while working on tasks that are inquiry-oriented activities, including genuine problems 

and investigations (NCTM, 1991). However, teachers typically find it challenging to 

adopt inquiry approaches in their teaching, particularly at the secondary level, partly 

because to teach this way requires teaching differently from how they were taught. 

Current teacher preparation programs are likely to expose prospective teachers to such 

approaches to various degrees. However, based on my experience with an 

inquiry-based program, this exposure, regardless of how substantive, may not result in 

implementation in the classroom during practicum, even when the supervising teachers 

give the student teachers the freedom to do so. This raises the issue of when and how 

are prospective teachers able, or likely, to implement inquiry approaches in their 

teaching during practicum and potentially in their future practice. This study 

contributes to our understanding of this issue.    

The research literature provides evidence to support concerns about the adequacy of 

preservice teachers’ knowledge as a basis to teach mathematics in an inquiry way. For 

example, research studies that examined preservice secondary mathematics teachers’ 

mathematics knowledge (e.g., Even, 1993; Feiman-Nemser & Remillard, 1996; 
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Kinach, 2002; Knuth, 2002) suggest that these teachers often do not hold a sound 

understanding of the mathematics they need in order to teach it with depth. This 

includes fundamental concepts from the school curriculum, such as operations with 

integers, functions, and proof. In contrast to knowledge of mathematics, studies on 

preservice teachers’ knowledge of mathematics teaching and learning are less 

represented in the research literature (Ponte & Chapman, 2006). However, some 

studies show that they could have inadequate understanding of students’ mathematics 

thinking (Tirosh, 2000; Stacey et al., 2001) and knowledge of communication and 

questioning (Moyer & Milewicz, 2002; Blanton, Westbrook, & Carter, 2005).  

In general, studies on preservice teachers’ knowledge tends to focus on what they do 

not know than on their sense making (Ponte & Chapman, 2006), including the nature 

of their knowledge that supports inquiry-oriented teaching. In focusing on their sense 

making and practical knowledge, this study is framed in a humanistic perspective of 

teacher thinking in which teachers are viewed as creating their own meaning to make 

sense of their teaching (Fenstermacher, 1994). It also adopts the perspective of 

Kilpatrick, Swafford and Findell (2001) that three major components of mathematics 

teacher knowledge are necessary for effective mathematics teaching: knowledge of 

mathematics, students, and instructional practices.  

RESEARCH PROCESS 

The study was framed in a qualitative, naturalistic research perspective that focuses on 

capturing and interpreting peoples’ thinking and actions based on actual settings. Case 

studies (Stake, 1995) were conducted to allow for in depth examination of the situation. 

The participants were two secondary preservice mathematics teachers with bachelor 

degrees in mathematics and were in the second year of their two-year B.Ed. program, 

which had a focus on inquiry teaching. The study was built around their semester-3 

practicum when they were in their assigned schools teaching for most of the semester, 

four days per week. During this semester, they integrated inquiry approaches in their 

teaching in spite of being in predominantly traditional classrooms.  

The main sources of data were interviews, classroom observations and teaching 

documents. The open-ended interviews before and after the semester included a focus 

on: their thinking about mathematics and inquiry teaching and learning; their 

meanings/interpretations of selected mathematics concepts covered in their teaching; 

their actual experiences with inquiry approaches during their practicum teaching; their 

thinking behind planning and conducting their lessons; and their thinking about what 

supported or inhibited their use of inquiry approaches. Classroom observations were 

conducted for lessons including and not including inquiry approaches. Data from the 

observations included teacher-student interactions about the mathematics topics being 

taught; description of learning activities students engaged in; what the teacher attended 

to as students worked on mathematics tasks; and teaching strategies for the content. 

Documents consisted of lesson plans, teacher prepared mathematics activities and field 

journal records of their reflections on their teaching.  
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Analysis involved close scrutiny of the data by the researcher and research assistants, 

focusing on identifying the participants’ knowledge and thinking about mathematics, 

students’ learning and inquiry teaching; explicit and implicit situations of when, how 

and why they used inquiry approaches; and apparent relationships between their 

knowledge or thinking and inquiry teaching. Themes were determined by identifying 

conceptual factors that characterized each participant’s thinking and practice based on 

the information from the initial scrutiny of the data. “Pattern” emerged as the most 

dominant theme in relation to inquiry teaching, then, the data were scrutinized further 

in order to understand the nature of this theme. Verification procedures included 

triangulation by comparing outcome from the various data sources, cross checks by 

research team, member checks and elimination of initial assumptions/themes based on 

disconfirming evidence. 

FINDINGS 

The two preservice teachers differed in how they planned and conducted their lessons 

during their practicum teaching, but they exhibited some key similarities that seemed 

to characterize their sense making of using inquiry approaches. These similarities 

involved four factors: their beliefs about mathematics, their beliefs about students’ 

learning, how they held their knowledge of mathematics and their pedagogical 

knowledge of engaging students in inquiry. In particular, the relationships among these 

factors seemed to be the key to explaining their use of inquiry approaches. The 

following highlights the nature of these factors and the relationships among them. 

Beliefs about mathematics: The participants held a similar core belief about 

mathematics that provided the foundation for when and how they used inquiry 

approaches. For Sara, this belief was “patterns, making connections between patterns 

and the world,” for Reba, “a lot of patterns … can be found everywhere.”  They also 

held the belief in a way that was “central and psychologically strong” (Green, 1971).  

Beliefs about students’ learning:  The participants also held a similar core belief about 

students’ learning that was compatible with inquiry learning and directly related to the 

belief about mathematics. This belief focused on having students “make the 

connections for themselves” (Sara) or “see patterns for themselves” (Reba). As Sara 

explained, “I always say, can you see a pattern? Like I always said, can you see it? 

Look for it.” She added, “It was funny because by the end of the class some of the kids 

would pick up on that and ask, are we looking for patterns again?  Yes, we’re always 

looking for patterns.” The belief also focused on “allowing students to develop their 

own ideas about things …to find their way to the answer … giving them the space to be 

able to do that.” (Sara) Similarly, “not that they are discovering everything on their 

own, but using what knowledge they have, … [then] to be able to make the connections 

themselves, with each other and being able to ask themselves questions like: does this 

work? Does this make sense?” (Reba)    

Mathematics knowledge: The way the participants held their knowledge of 

mathematics played a significant role in terms of when and how they were able to 
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transform their beliefs about mathematics and learning into practice. For example, 

mathematics concepts or procedures that they readily understood, or already held, in 

terms of patterns were taught through inquiry-oriented approaches. This seemed to be 

more important than whether they had conceptual versus procedural understanding, 

since deep understanding of the mathematics was not always present or demonstrated 

with use of the inquiry approach. The participants were able to associate the concepts 

and procedures they held as patterns with specific inquiry-learning approaches that 

focused on the mathematical structure of the concepts or procedures. These approaches 

involved using a compare/contrast technique with tasks of the form of examples versus 

non-examples; alternative representation of the same concept; card sorting; concrete 

situations; and solved examples. Thus, the preservice teachers were able to select or 

construct tasks that embodied the beliefs about mathematics and learning when they 

(mathematics, concepts, learning) were all viewed as directly related to pattern as 

structure or way of knowing. The following are two examples of these 

mathematical/pedagogical tasks that they created.  

Both examples consist of concepts or procedures that were new for the students. Sara’s 

example: This task dealt with prime and composite numbers in her Grade 7 class. Sara 

wrote the numbers 1 through 20 on the blackboard. Students were required to work in 

groups to find the factors of each number based on their prior knowledge. Then, they 

“must look for patterns found in the factors” and be prepared to share and discuss them 

in whole-class setting.  

Reba’s example: This task dealt with solving systems of linear equation through 

elimination and substitution as required by the curriculum for her Grade 11 class. Reba 

prepared three solved examples of elimination and three of substitution. The following 

is the set of equations used for the elimination cases. A different set was used for 

substitution. 

(i) 3x – 5y = -9;  4x + 5y = 23 

(ii) 2x + 3y – 32 = 0;  3x – 2y – 22 = 0 

(iii) 
2

3−x
 – 

3

5−y
= 1;  

2

3+x
 + 

4

3−y
 = 1 

Students were required to “figure out how each process works through the solved 

examples … [and] to be able to explain fully how and why each method works … how 

do the examples differ and compare with one another.”[Sara] 

The participants’ beliefs about mathematics included connections to the world. But this 

did not play a significant role in when or how they intentionally used inquiry 

approaches in teaching a mathematics concept. This aspect of their belief was reflected 

only in the use of word problems where they tried to include real world-like situations 

or something to make the task fun in a problem-solving context. Sara did this more 

often than Reba because the junior high school context she was in seemed to lend itself 

better to that than the senior high context for Reba. In Sara’s case, a few of the problem 

solving tasks she used allowed for non-algorithmic skills to arrive at a solution. For 
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example, she explained, “My key is to make them [the tasks] engaging. … When we 

did word problems … I had these plastic eggs and I stuck things inside them. … They 

had to find out what was inside the egg without opening it, and they had to talk about 

it.” Both participants also, on a few occasions, on introducing a topic provided some 

historical information about it. 

Instructional knowledge: Finally, the participants held instructional knowledge for 

engaging students in the learning tasks that was directly related to their beliefs about 

learning. In particular, their thinking and practice indicated that this knowledge 

included use of groups, open/probing questioning, and flexible listening in an inquiry 

-learning context. For example, Sara explained: “I always tried to make them tell me 

what they were doing. They would ask a question and I would always try to re-ask the 

question to them.” She later expanded on this. “[I] say, what do you mean by that? Or 

where are you going? Or what are you doing with that? So I always tried to listen to 

their process … how are they thinking and why.” Also, as Reba noted: “I would ask 

them well what are you thinking of because then that could maybe trigger them without 

me having to say to them how do you exactly solve this.”  

Practice: Classroom observations of the preservice teachers’ practice revealed that 

their inquiry-oriented lessons had a similar structure. Each participant was unique in 

how this structure was lived in the classroom, but an example from Reba’s case will be 

used to illustrate the structure, which consisted of the following four stages. 

An introduction stage: This differed based on the topic and included a check of 

students’ prior knowledge; brief history of the mathematics concept; and clarifying 

tasks. For Reba’s Grade 10 introductory lesson on coordinate geometry involving 

length, midpoint and slope of line segments, she introduced the lesson through a story 

explaining the history of Descartes and how the coordinate plane was invented. She 

also clarified the task and explained the unfamiliar notion used for a point. 

An exploration stage: This involved students’ working on tasks in groups with the 

teacher posing questions and prompts. For this stage, Reba prepared cards consisting 

of different representations of the concepts. One set of cards had “length of line 

segment”, “mid-point of line segment”, and “slope of line segment.” The other sets of 

cards contained, for each of the three concepts, equations, graphs, problems, and 

solutions of the problems. Students were required to sort the cards according to the 

three concepts and be able to explain why their solutions made sense – “how do you 

know that these go together?” Students first worked in pairs then groups of four to 

compare and discuss their findings. Reba, in response to their questions, or her 

ob-servations, would prompt them to think about what they were doing or not noticing. 

A sharing and discussion stage: Here, students shared and defended their findings in a 

whole-class setting. Reba guided the discussion to make sure they covered all she 

expected them to know about the concepts. 

A conclusion stage: Here, Reba guided the students to think about what they learnt 

about the concepts and summarized the key ideas. 
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This brief outline of the lesson does not include the ongoing teacher-student 

interactions that occurred to facilitate the students’ thinking, inquiry, and sharing 

processes that were necessary for the lesson to have an inquiry tone.   

DISCUSSION 

The four categories of the preservice teachers’ knowledge described above are key 

factors in accounting for, and understanding, their use of inquiry approaches in their 

teaching. But this importance of the four categories of knowledge lies in their 

interconnectedness. This connectedness provided the two preservice teachers with a 

logical and viable image of what this teaching could look like. It was necessary for 

these teachers to transcend other factors, like contextual constraints, in order to teach 

with inquiry-oriented techniques. In fact, when the interconnectedness was lacking, for 

example, the mathematics concept was viewed as a fact instead of as a pattern, these 

teachers resorted to traditional teaching and justified it in terms of the context-ual 

constraints they perceived, for example, teacher-centered classrooms; limited time; 

pre-established classroom tone; pre-established sequence of units; nature of topic. As 

Sara noted: “As a student [teacher], you are living in the partner teachers environment, 

so this puts constraint on how open-ended I can be in my teaching.”  

This integrated view of the preservice teachers’ knowledge could be considered as a 

network of the preservice teachers’ understandings of key ideas of mathematics, 

students and instruction and, more importantly, of relationships among them. The 

following model offers a way of conceptualizing the relationships as held by the 

preservice teachers. The model connects the preservice teachers’ beliefs and  

 

 

 

 

 

 

 

 

 

 

 

 

conceptions of mathematics, mathematics concepts and procedures, students and 

instructional practices when they support inquiry-oriented teaching approaches. In this 

model, pattern, as it relates to mathematical structure, is the main organizing theme 
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that connects mathematics, learner and inquiry pedagogy as follows. First, 

mathematics as pattern is associated with a mathematics concept/procedure that is 

viewed in terms of its mathematical structure and, thus, as pattern. Then, this concept 

or procedure is associated with a mathematical task designed in terms of this pattern. 

Second, the student is viewed in the role as inquirer in order to learn to think about and 

see mathematics as pattern. The mathematical task becomes a learning task for the 

student that involves inquiry of pattern. This learning task is framed in a social context. 

Third, the teacher is viewed in the role as facilitator in order to support students as 

inquirers. The mathematical task becomes an instructional task for the teacher that 

involves using prompts and questioning to help students to notice relevant patterns 

built into the task. 

This model indicates that the preservice teachers constructed an image of 

inquiry-oriented practice that involved understanding mathematics as patterns, 

understanding learner as inquirer of patterns and understanding teacher as facilitator of 

student as inquirer of patterns. As can be expected of novice teachers, these 

understandings, and thus the image of practice, lacked depth. But, in spite of the 

quality of their knowledge, whether these understandings were held in a disconnected 

way or connected way that made sense to them was of more importance in shaping 

their practice. This connection was important to provide the preservice teachers with 

an intention of teaching that was explicit and concrete, that is, to help students to see 

“pattern” as a way of learning and understanding mathematics. 

This connectedness, then, was necessary for the preservice teachers to make sense of 

how to transform their newly constructed theoretical pedagogical knowledge into 

practical knowledge. In this case, when this connectedness was missing, usually 

because of lack of association between mathematics as pattern and concept and tasks as 

pattern, although the teachers still had knowledge about inquiry-oriented pedagogy, 

there was little evidence of it in their teaching as they resorted to more traditional, 

teacher-oriented practice. Thus, for preservice teachers such as these participants, the 

key to developing the connectedness is understanding mathematics as pattern 

conceptually and pedagogically. This is important for them to be able to select or create 

mathematical tasks that are relevant and meaningful for investigating patterns and to 

understand the ways of thinking and roles of the learner and teacher in the inquiry. 

Thus, to add depth to their practice, they need experiences that will deepen this 

understanding of mathematics as pattern conceptually and pedagogically. In the 

context of teacher education, this requires learning experiences that integrate and allow 

for the integration of knowledge of mathematics, learner and instruction. 

CONCLUSION  

The findings suggest that preservice secondary teachers could transform theory to 

practice regarding inquiry teaching if they construct a relevant, integrated view of the 

three core domains of teacher knowledge – mathematics, instruction and students. This 

allows them to organize their thinking coherently about what and how they intend to 
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teach. The findings also suggest that it is important to provide them with experiences 

that treat these domains of teacher knowledge in an integrated way. Rather than 

treating the knowledge separately, as is often done in teacher education, an approach 

that treats them as interwoven within classroom-based situations could help 

prospective teachers to develop knowledge that is useful and usable.  

Note: This study is funded by Social Sciences and Humanities Research Council of Canada. 
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DEVELOPING AND TESTING A SCALE FOR MEASURING 

STUDENTS’ UNDERSTANDING OF FRACTIONS 

Charalambos Y. Charalambous  

University of Michigan 
 

The study reported in this paper is an attempt to develop and test a scale for measuring 

students’ understanding of fractions. In developing the scale, several criteria proposed in 

previous studies for examining students’ construction of the notion of fractions were 

employed. A test consisting of 44 tasks related to the five subconstructs of fractions was 

developed and administered to 351 fifth graders and 321 sixth graders. A two-parameter 

Item Response Model was used and the scale developed was analyzed for reliability and fit 

to the data. The analysis of the data revealed that the scale had satisfactory psychometric 

properties. Hierarchical cluster analysis also suggested that the 44 tasks within the scale 

could be grouped into three clusters, according to their level of difficulty. The findings of 

the study are discussed with respect to teaching and learning fractions.  

 

INTRODUCTION 

In the mid 1970s Kieren (1976) proposed that the concept of fractions is multifaceted 

and that it consists of five interrelated subconstructs: part-whole, ratio, operator, 

quotient and measure. Since then, several researchers have put forth and tested a 

number of criteria for examining students’ understanding of the different subconstructs 

of fractions (e.g., Baturo, 2004; Boulet, 1999; Lamon, 1999; Marshall, 1993; 

Stafylidou & Vosniadou, 2004). Yet, the extent to which those criteria can form a scale 

for measuring students’ understanding of fractions remains an open question. The 

present paper aims to address this research gap by developing and testing such a scale. 

The summary of the relevant literature that follows provided guidelines for the 

development of a test assessing students’ construction of the concept of fractions.     

The part-whole subconstruct of fractions is defined as a situation in which a continuous 

quantity or a set of discrete objects are partitioned into parts of equal size (Lamon, 

1999). To develop the part-whole subconstruct of fractions, students should understand 

that the parts into which the whole is partitioned must be of equal size; they should also 

be able to partition a continuous area or a discrete set into equal parts and discern 

whether the whole has been partitioned into equal parts. In addition, they should 

develop the idea of inclusion or embeddedness (i.e., the parts of the numerator are also 

components of the denominator) and understand that as the number of parts into which 

the whole is divided increases, their size decreases (Boulet, 1999). Finally, a full 

understanding of the part-whole subconstruct requires that students develop unitizing 

and reunitizing abilities (Baturo, 2004) which allow them to reconstruct the whole 

based on its parts and repartition already equipartitioned wholes.   

The ratio subconstruct considers fractions as a comparison between two quantities. To 

grasp the notion of fractions as ratios, students need to construct the idea of relative 

amounts (Lamon, 1999). They should also comprehend the covariance-invariance 
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property, according to which the two quantities in the ratio relationship change 

together so that the relationship between them remains invariant. The “orange juice 

task” (Noelting, 1980), in which children are asked to specify which mixture of orange 

juice makes the juice the most “orangey” has been widely employed to examine 

whether students have developed these ideas. 

In the operator interpretation of fractions, rational numbers are regarded as functions 

applied to some number, object, or set (Behr et al., 1993; Marshall, 1993). One could 

think of the operator as an application of the numerator of the fraction to the given 

quantity, followed by the denominator quantity applied to this result, or vice-versa. 

Alternatively, one could consider the operator as a transformer that changes the size        

– but not the shape – of a figure or changes the number of elements in a set of discrete 

objects (Lamon, 1999). To master this subconstruct, students should be able to identify 

a single fraction to describe a composite multiplicative operation (i.e., a multiplication 

and a division), and relate inputs and outputs (e.g., a 3/4 operator results in 

transforming an input quantity of 4 into 3) (Behr et al., 1993).  

According to the quotient subconstruct, fractions are the result of division, in which the 

numerator defines the quantity to be shared and the denominator defines the partitions 

of the quantity. To develop an understanding of this subconstruct, students need to be 

able to relate fractions to division and understand the role of the dividend and the 

divisor in this operation. Mastering the quotient subconstruct also requires that 

students develop a sound understanding of partitive and quotitive division (Marshall, 

1993).  

The measure subconstruct conveys the idea that a fraction is a number; this 

subconstruct is also associated with the measurement of the distance of a certain point 

on a number line (Marshall, 1993; Stafylidou & Vosniadou, 2004). Several researchers 

have argued that, despite their relative understanding of the aforementioned 

subconstructs of fractions, many students appear not to fully understand that fractions 

are an extension of the number system (Amato, 2005; Hannula, 2003). Hence, Lamon 

(1999) refers to a qualitative leap that students need to undertake when moving from 

whole to fractional numbers. A robust understanding of the measure notion requires 

that students comprehend that between any two fractions there is an infinite number of 

fractions. They should also be capable of locating a fractional number on a number line 

and identify a fractional number represented by a point on a number line (Hannula, 

2003).  

In this context, the present study sought answers to two research questions. First, to 

what extent can the criteria proposed above help develop a scale with good 

psychometric properties to measure students’ understanding of fractions? And second, 

provided that such a scale can be developed, do tasks that measure different 

subconstructs of fractions differ in their level of difficulty and their contribution to the 

development of the scale? Answers to these questions are important both for teaching 

and assessing fractions.  
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THE DEVELOPMENT OF THE TEST  

To address the research questions, a test on fractions (available on request) was 

developed taking into consideration the preceding literature review and the curriculum 

used in Cyprus where the study was conducted. Table 1 presents the specification table 

that guided the construction of the test and the tasks employed to examine students’ 

performance on each of the five subconstructs of fractions.  

 
Subconstruct  Tasks 

Part-whole  1-6, 20, 22-28, 39 

Ratio 9, 10, 13-15, 25, 30, 31, 38 

Operator 8, 11, 12, 18, 44 

Quotient 7, 29, 40, 41, 43 

Measure 16, 17, 19, 21, 32-37, 42 

Table 1: Specification table of the test used in the study 

 

The first six tasks of the part-whole subconstruct asked students to identify the 

fractions depicted in discrete or continuous representations. Tasks 22, 27, and 39 

examined students’ unitizing and reunitizing abilities (Baturo, 2004), whereas the 

remaining tasks addressed common misconceptions related to the notion of 

embeddedness, the requirement that the parts be of equal size and the inverse 

proportional relationship of the size and the number of parts into which a unit is 

partitioned  (Boulet, 1999). Nine tasks were used to examine the development of the 

notion of fractions as ratios. Those included expressing the relative size of two 

quantities using a fraction (tasks 9-10), identifying fractions as ratios (task 25) and 

comparing ratios, based either on quantitative (13-15) or qualitative information 

(30-31) (the latter five tasks were related to the “orange juice problem”). Task 38 

referred to the widely cited problem of boys and girls sharing different numbers of 

pizzas (Marshall, 1993). The tasks used to examine the operator notion of fractions 

asked students to specify the output quantity of an operator machine given the input 

quantity and a fraction operator (tasks 11-12). The remaining three tasks required 

students to decide the factor by which the number 9 should be multiplied to become 

equal to 15 (task 8), use a fraction to describe a composite operation (task 18), and 

specify the factor by which a picture reduced by 3/4 should be enlarged to restore it to 

its original size (task, 44 Lamon, 1999). Three of the tasks used to measure the quotient 

subconstruct (tasks 29, 40, and 41) examined students’ ability to link a fraction to the 

division of two numbers and identify the role of the dividend and the divisor; the 

remaining two tasks of this category were related to the partitive and quotitive 

interpretation of division (tasks 7 and 43, respectively). Consistent with previous 

studies (Hannula, 2003; Lamon, 1999; Stafylidou & Vosniadou, 2004), the tasks of the 

measure subconstruct examined students’ performance in identifying fractions as 

numbers (tasks 21, and 32-34) and locating them on number lines (tasks 16-17, and 

35-37). Task 19 required students to find a fraction that would be located between two 

given fractions; in task 42 students were required to identify among a number of 
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fractions the one that is closer to the number one.  

It is also important to note that in Cyprus there is a national curriculum used in all 

elementary schools. Like curricula in other educational settings (Amato, 2005; Lamon, 

1999), the Cypriot curriculum places more emphasis on the part-whole interpretation 

of fractions. The remaining subconstructs are mainly taught in fifth and sixth grades.    

  

 

METHODS 

The tasks included in the tests were content validated by three experienced elementary 

teachers and two university tutors of Mathematics Education. Based on their comments, 

minor revisions were made to the test. The final version of the test was administered to 

351 fifth graders and 321 sixth graders (316 boys and 356 girls). To avoid a single test 

period of undue length, the test tasks were split into two sub-tests, which were 

administered to students over two consecutive schooldays. Students had eighty 

minutes to work on each sub-test. To examine whether the tasks used in the tests could 

form a scale for measuring students’ understanding of fractions an Item Response 

Theory (IRT) model was fit to the data.  In the scales developed using IRT models, the 

task parameters (β : difficulty of the task and α : item discrimination) do not depend on 

the ability distribution of the examinees and the parameter that characterizes the 

examinees ( θ : ability) does not depend on the set of the test tasks (Hambleton, 

Swaminathan, & Rogers, 1991). The data were analyzed by using BILOG-MG 

(Zimowski, et al., 1996). First, the fitting of the data to a single-parameter model was 

compared to that of a two-parameter model. Whereas in a single-parameter model all 

tasks contribute equally to the development of the scale, a two-parameter model allows 

the tasks to differ in their discrimination parameter. Tasks with higher values of 

discrimination are more useful for developing a measurement scale, since they are 

better at separating examinees into different ability levels (Embretson & Reise, 2000). 

Finally, hierarchical cluster analysis was used to cluster the tasks into different groups, 

according to their level of difficulty.  

 

 

FINDINGS 

The analysis of the data revealed that both a single-parameter and a two-parameter 

model fit the data well (reliability indices=.88, and .91, for the one- and two-parameter 

models, respectively). However, since the difference of the -2loglikelihood index of 

the two models was statistically significant (x
2
=641.35, df=43, p<.001), the 

two-parameter was preferred as a better-fitting model. This meant that the tasks had 

different discrimination, and therefore, different contribution to the development of the 

scale. The analysis pursued henceforth was based on a two-parameter model. The 

psychometric properties of the scale developed by fitting a two-parameter model were 
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further examined using the test information curve and by examining the extent to 

which the tasks had different parameters for different groups of students (Differential 

Item Functioning, DIF) (Embretson & Reise, 2000). Both criteria revealed that the 

scale had relatively good psychometric properties. In particular, the scale described the 

construct under examination satisfactorily well (i.e., students’ understanding of 

fractions) with values ranging from θ= – 3 to θ= + 3. Moreover, only five items had 

DIF for students of different grade levels or different gender.  

The estimates of the two-parameter model that emerged are presented in Table 2 in 

ascending order, according to the difficulty level of each task. In particular, the 

estimates for the difficulty and discrimination of each task, alongside their standard 

error values are illustrated in Table 2. The last column of Table 2 presents the grouping 

of the 44 tasks of the test into different clusters, according to their level of difficulty. 

The use of hierarchical cluster analysis suggested that the tasks be grouped into three 

levels [i.e., the largest decrease in the value of the distance measure of the 

Agglomeration schedule occurred from moving from a two-cluster (37.63) to a 

three-cluster solution (17.55)].  

 

 

Task Construct β  SE( β ) α  SE( α ) Level 

23 Part-whole -3.57 0.62 0.36 0.07 1 

26 Part-whole -2.82 0.44 0.38 0.06 1 

1 Part-whole -2.52 0.32 0.52 0.08 1 

6 Part-whole -2.48 0.29 0.63 0.09 1 

5 Part-whole -2.35 0.22 1.03 0.16 1 

4 Part-whole -2.12 0.16 1.33 0.19 1 

25 Ratio -1.73 0.27 0.35 0.05 2 

40 Quotient -1.73 0.30 0.30 0.05 2 

28 Part-whole -1.63 0.16 0.67 0.08 2 

13 Ratio -1.49 0.12 0.8 0.09 2 

9 Ratio -1.21 0.24 0.29 0.05 2 

15 Ratio -1.09 0.18 0.37 0.05 2 

30 Ratio -1.07 0.13 0.56 0.06 2 

10 Ratio -1.04 0.21 0.31 0.05 2 

14 Ratio -1.00 0.09 0.82 0.08 2 

2 Part-whole -0.78 0.09 0.73 0.07 2 

11 Operator -0.60 0.07 0.85 0.07 2 

41 Quotient -0.59 0.15 0.37 0.05 2 

22 Part-whole -0.43 0.09 0.59 0.06 2 

16 Measure -0.34 0.05 1.21 0.09 2 

3 Part-whole -0.27 0.08 0.62 0.06 2 

31 Ratio -0.20 0.11 0.44 0.05 2 

43 Quotient -0.19 0.06 0.94 0.08 2 

17 Measure -0.14 0.05 1.08 0.09 2 

24 Part-whole -0.11 0.17 0.27 0.04 2 

12 Operator -0.05 0.06 0.89 0.07 2 

29 Quotient -0.03 0.19 0.25 0.04 2 

27 Part-whole 0.04 0.07 0.75 0.07 2 
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42 Measure 0.09 0.07 0.71 0.06 2 

20 Part-whole 0.13 0.06 0.90 0.07 2 

39 Part-whole 0.31 0.07 0.87 0.07 2 

38 Ratio 0.80 0.08 0.80 0.07 3 

35 Measure 0.81 0.07 0.95 0.08 3 

36 Measure 1.06 0.06 1.47 0.13 3 

37 Measure 1.07 0.05 1.98 0.19 3 

34 Measure 1.11 0.16 0.45 0.05 3 

32 Measure 1.16 0.16 0.47 0.05 3 

33 Measure 1.24 0.18 0.42 0.05 3 

7 Quotient 1.35 0.15 0.56 0.06 3 

18 Operator 1.48 0.13 0.70 0.07 3 

19 Measure 1.67 0.12 0.93 0.09 3 

8 Operator 2.06 0.23 0.51 0.06 3 

21 Measure 2.87 0.53 0.25 0.05 3 

44 Operator 3.19 0.39 0.72 0.12 3 

Table 2: Two-Parameter model estimates for students’ understanding of fractions 

 

Three observations mainly arise from Table 1. First, the third column of Table 3 

reveals that the task difficulty level ranges from β= –3.57 to β= +3.19. Taking into 

consideration that the students’ abilities also ranged from θ= – 3 to θ= +3, one could 

infer that the 44 tasks of the test are relatively well-targeted against the students’ ability 

measures, something that provides further support to the psychological properties of 

the scale.  

Second, columns two, three, and seven suggest that the tasks of the first level (the 

easiest tasks of the scale) are all related to the part-whole “personality” of fractions. 

The second level (tasks of medium level of difficulty) consists of a variety of tasks 

associated mainly with the ratio and the quotient subconstructs of fractions. The tasks 

examining students’ unitizing and reunitizing abilities, as well as those related to 

common misconceptions on the part-whole notion of fractions were also clustered in 

the second level. The third level (the most difficult tasks of the scale) is mainly 

comprised of tasks examining students’ construction of the operator and the measure 

subconstructs of fractions. In particular, the third level consists of all items examining 

students’ understanding of fractions as numbers, as well as tasks related to locating 

numbers on number lines. It is also notable that all three tasks related to describing a 

composite function as a fraction or deciding the factor by which a number or a figure 

should be transformed to get a specific quantity or size of a given shape were rank 

ordered among the most difficult tasks of the scale.  

Third, the tasks used in the test contributed unevenly to the development of the scale. 

Given that tasks with higher values can better discriminate students into different 

ability levels, the fifth column of Table 2 shows that all tasks related to number lines 

(tasks 16-17 and 35-37) were among the most highly discriminating tasks (tasks with 

values close to or higher than 1). Tasks 4 and 5, which were associated with identifying 
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a fraction depicted in a continuous model (rectangular and circular, respectively) also 

had high discriminating values. The tasks on the quotient subconstruct had the lowest 

discriminating values.   

 

DISCUSSION   

The findings of the present study suggest that the criteria proposed in previous studies 

to examine students’ understanding of the multiple facets of fractions can form a basis 

for developing a scale for measuring students’ construction of rational numbers. The 

scale developed in this study had good psychometric properties, as indicated by several 

criteria, a result that renders the scale suitable both for teaching and assessing fractions.  

The ranking of the 44 tasks of the test according to their level of difficulty indicates that 

tasks related to recognizing fractions depicted in continuous area or discrete set 

representations are fundamental for constructing the notion of fractions. Although one 

might counterargue that this result was due to the fact that Cypriot students are offered 

ample opportunities to practice this skill, it is important to recall that the relative 

difficulty of tasks included in scales developed using IRT models does not depend on 

the examinees’ abilities and, consequently, on their learning experiences. The fact that 

tasks 4 and 5 had high discriminating values, as well as that tasks examining students’ 

unitizing and reunitizing abilities and common misconceptions associated with the 

part-whole interpretation of fractions were ranked in the second level further 

substantiate the argument that some notions of the part-whole interpretation are more 

fundamental for developing the concept of fractions. This hypothesis is also supported 

by a recent study (Charalambous & Pitta-Pantazi, in press) showing that the part-whole 

subconstruct of fractions is critical for mastering the concept of fractions.  

The study also revealed that most of the items related to the measure subconstruct were 

ranked among the most difficult items of the scale. This finding lends itself to support 

the claim that students need to make a qualitative leap in their number 

conceptualization to develop a full understanding of fractions (Lamon, 1999; 

Stafylidou & Vosniadou, 2004). The tasks related to the operator interpretation of 

fractions were also ranked among the most difficult items. This result could be 

attributed to the fact that the operator notion is closely related to the idea of 

function-transformation which is relatively difficult for elementary school students to 

comprehend (Behr et al., 1993). Finally, it is important to note that all tasks associated 

with locating numbers on a number line were among the highly discriminating items, a 

finding that provides further support to the argument regarding the central role that 

number lines should have in teaching and assessing fractions (Hannula, 2003, p.17).  

Overall, the present study suggests that instruction should not underestimate students’ 

difficulties in constructing the measure and the operator subcontracts of fractions. At 

the same time, it also indicates that capitalizing on the affordances that several 

representational models offer, such as the number line, teachers might better scaffold 

students’ construction of the concept of fractions. Future research conducted in other 
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educational settings could provide further support to this argument. Further work is 

also needed in cross-validating the scale considered in the present study and developing 

more tasks on the quotient subconstruct that appears to have the lowest discriminating 

values.  
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THE EFFECTIVENESS AND LIMITATION OF READING AND 

COLORING STRATEGY IN LEARNING GEOMETRY PROOF 

Ying-Hao Cheng  and Fou-Lai Lin 

China University of Technology / National Taiwan Normal University 

 

The reading and coloring (RC) strategy has been verified that it can enhanced 

incomplete provers’ performance to Taiwan junior high students while they had learnt 

the multi-steps formal geometry proof. In this study, we transfer the RC  strategy into 

whole class regular teaching and explore its effectiveness and limitation. The results 

show that the learning effectiveness of RC strategy is better significantly than 

traditional labelling strategy, it enhance the proof quality distribution of multi-steps 

geometry proof, and it  is less-effective to non-hypothetical bridging students . 

INTRODUCTION 

The learning and teaching of multi-steps geometry proof in Taiwan 

The learning content concerning geometric shapes and solids in Taiwan is 

considerably abundant in the elementary and junior high school. The geometry lessons 

mainly focuses on finding the invariant properties of kinds of geometric figures and 

apply these properties to solve or prove problems. The formal deductive approach of 

argumentation is introduced and become the only acceptable way in the second 

semester of grade 8, after introducing the congruent conditions of two triangles. 

Although the manipulative approach is allowed in finding geometry properties, the 

way of verifying a geometry property is basically deductive. The task of geometry 

proof in formal lessons can be divided into two phases. In the beginning, the students 

learn how to apply one property to show a geometry proposition is correct, that is, to 

infer the wanted conclusion by one acceptable property under the given condition. We 

name this is a single-step proof. In this phase, if two or more properties are necessary in 

a proof question, the textbook then divide the whole question into step-by step of single 

proof task. The second phase start in the final chapter of geometry lessons in the first 

semester of grade 9. The students learn how to construct a formal deductive proof with 

2 or more geometry properties. From chaining the step-by step of single proof into a 

sequence of proof to proving an open-ended question which 2 or more properties are 

necessary. That is the so-called multi-steps geometry proof question. It spend about 

five weeks of regular lessons. 

The teaching style in Taiwan junior high school is basically lecturing. Most of the 

teachers teach geometry lessons by exposition to about 30 students in one classroom. 

And the geometry proof task is basically treated as writing the reason of a proposition 

by applying learnt properties.  
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The Reading and coloring strategy 

The reading and coloring (RC) strategy is initially developed for enhancing incomplete 

provers’ performance in geometry proof. The incomplete provers are grade 9 students 

those who had learnt the chapter of formal multi-steps proof and was able to recognize 

some crucial elements to prove but missed some deductive process in 2-steps proof test. 

The RC strategy ask students to read the question, label out the meaningful terms, and 

then drawing or constructing given conditions and intermediary conclusions on the 

given figure by coloured pens, where the congruent configurations in same colour. The 

RC strategy is modified from a typical teaching strategy used in Taiwan junior high 

geometry lessons which named ‘labelling’. The teachers usually use the short segments, 

arcs or signs to label out the equal sides or angles between subfigures. The RC strategy 

was developed based on two principles: one is it should provide an operative tool to 

students for highlight necessary information, and the other one is it should keep 

teachers’ regular teaching style (Cheng, Y. H. and Lin, F. L., 2006). 

The function of colour and visual tool for mathematical reasoning is supported by 

many literatures. Such that Byrne(1847) used coloured diagrams and symbols instead 

of letters to present the formal geometry proof in ‘Elements’. He proposed that the 

coloured diagrams are easier to understand the formal deductive process of Euclidean 

proof. The function of this kind of visual aids was mentioned in Mousavi, Low & 

Sweller(1995) they showed that a suitable visual presentation may integrate all the 

information necessary in problem-solving task, reduce the cognitive load and increase 

memory capacity. Stylianou & Silver(2004) find out that the difference between 

experts and novices when solving advanced mathematical problem is the use of visual 

representation. The experts always construct an elaborate diagram to include all the 

literal information and thinking on this diagram. 

From our previous studies (Cheng, Y. H. and Lin, F. L.,2005, 2006), the RC strategy is 

an effective strategy to incomplete provers. Cheng and Lin(2005) showed that the 

colouring the known information was effective in a highly interactive instruction. This 

study showed that the intervention of colouring enhance 12/20 of not-acceptable proof 

in three different unfamiliar 2-steps items to be acceptable. Furthermore, the RC 

strategy enhance 14/14 of not-acceptable proof items to be acceptable in the 

non-visual-disturbed multi-steps questions after about 10 minutes of teacher’s 

demonstrating and 23/24 of the items in the delay post test are acceptable (Cheng and 

Lin, 2006). 

The aim of the study 

The effectiveness of the RC strategy was verified in our previous studies which focus 

on incomplete provers. They are all students who had learnt formal multi-steps 

geometry proof. And these teaching experiments are conducted after the school lesson. 

We cannot conclude that the RC strategy is an effective learning and teaching strategy 

to all students in regular teaching. The main purpose of this study is to explore the 

effectiveness and limitation of the RC strategy in regular Taiwan junior high teaching. 
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THE PROCESS OF CONSTRUCTING A MULTI-STEPS PROOF 

A standard geometry proof question in junior high geometry lessons and tests is of the 

form ‘Given X, show that Y’ with a figure which the figural meaning of X and Y are 

embedded in (fig(X,Y). When a student face to a proof question, the information 

include X, Y, fig(X,Y), and the status (Duval, 2002) of X (as the premise) and Y (as the 

conclusion). The proof process is to construct a sequence of argumentation from X to 

Y with supportive reasons. This process can be seen as a transformation process from 

initial information to new information with reasoning operators such as induction, 

deduction, visual judgment… (Tabachneck & Simon, 1996). The acceptable reason in 

the junior high geometry proof lessons is deduction with acceptable properties. So, we 

may say that to prove is to bridge the given condition to wanted conclusion by 

acceptable mathematical properties. 

Healy & Hoyles(1998) propose that the process of constructing a valid proof involves 

several central mental processes:(1)students might sort out what is given properties 

already known or be assumed and what is to be deduced;(2)students might organize the 

transformation necessary to infer the second set of properties from the first into 

coherent and complete sequence. Duval(2002) propose a two level cognitive features 

of constructing proof in a multi-steps question. The first level is to process one step of 

deduction according to the status of premise, conclusion, and theorems to be used. The 

second level is to change intermediary conclusion into premise successively for the 

next step of deduction and to organize these deductive steps into a proof. 

In a single step proof question, the process is relatively simple. The student might 

retrieve a property ‘IF P then Q’ which condition P contain the premise X and result Q 

contained in Y and finish the proof. We may say this kind of bridging is simple 

bridging. 

The proof process in a multi-steps proof question is much more complex. Since there is 

no one property can be applied to bridge X and Y. The student has to construct an 

intermediary condition (IC) firstly for the next reasoning. The IC might be reasoned a 

step forwardly from X. It is an intermediary conclusion (Duval, 2002) inferred from X 

as a new premise to bridge Y. Or, it might be reasoned a step backwardly from Y. It is 

a intermediary premise reasoned from Y as the wanted conclusion to bridge X. So, the 

first step in a multi-step proof is quite different to the step in a single step proof. The 

first step in a multi-step proof may be a goalless inferring from X and concluding many 

reasonable intermediary conclusions. The next step is to go on the bridging process to 

Y by selecting a new premise from the intermediary conclusions. Or, it may be a 

backward reasoning from Y and finding many reasonable intermediary premises and 

the next step is to set up a new conclusion from the intermediary premises and going on 

the bridging process from X. In fact, this kind of reasoning is lasting before the final 

step of completing a proof. No matter this kind of reasoning is constructed by forward 

or backward reasoning, constructing the intermediary condition in a multi-steps proof 

is essentially a process of conjecturing and selecting/testing. We may say this kind of 

reasoning process is hypothetical bridging. 
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In summary, constructing an acceptable geometry proof can be seen as a bridging 

process from given condition to wanted conclusion with inferring rules. The necessary 

process includes (1) to understand the given information and the status of these 

information, (2) to recognize the crucial elements which associate to the necessary 

properties for deduction, (3) especially in multi-steps proof, to construct intermediary 

condition for the next step of deduction by hypothetical bridging, and (4) to coordinate 

the whole process and organize the discourse into an acceptable sequence. 

STUDY DESIGN 

Transferring the RC strategy into regular teaching 

Our previous studies applied RC strategy to enhance incomplete provers’ performance 

in geometry proof. This type of students have learnt the formal multi-steps geometry 

proof and are able to recognize some crucial elements and construct meaningful 

intermediary condition. And in our experiments, these students are grouped into 

individual interview or small group learning. The above conditions are quite different 

to real classroom teaching. 

We design the whole class teaching with RC strategy based on two principles. The first 

is it should be easily to apply by the teacher. Since it is not easy for them to apply a 

completely new method in regular teaching, the strategy should be easy to fit into 

teachers’ typical teaching approaches (lecturing). The RC strategy is modified from a 

typical teaching strategy used in Taiwan junior high geometry lessons which named 

‘labelling’: using the short segments, arcs or signs to label out the equal sides or angles 

between subfigures. In this study, we ask the teacher use different coloured chalk pen 

to show the process of proving in the RC strategy on the blackboard: drawing or 

constructing given conditions and intermediary conclusions on the given figure by 

coloured chalk pens, where the congruent configurations in same colour. 

The second principle is it has to be practicable use to students in all proving task, 

including taking notes, exercises, homework. In this study, we provide every student a 

8-color pen and ask them to use it in all proof task mentioned above.  

The samples 

A questionnaire with four items are developed and tested as pre-test in 4 classes of 

grade 9 students before they learn the chapter of formal multi-steps geometry proof. 

Two of the items are single step and two are multi-steps. The students’ performance in 

these items are coded into acceptable, incomplete, improper, intuitive response, and no 

response five types according to the coding framework developed in the national 

survey (Lin, Cheng and linfl team, 2003). The average score of these four classes in the 

school tests of geometry lessons are considered. Two of these four classes are selected, 

one for the RC strategy and the other for the traditional labelling strategy, for this study 

because their performance in the pretest and score of school tests are not different 

significantly. 
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The mathematics teachers of these two classes are both experienced teachers. We 

divide them into two different teaching groups because the teacher of RC class (T1) 

accepts our suggestion of applying the RC strategy into her regular teaching and the 

teacher of labelling class (T2) refuses. 

The process 

In the beginning, we show a demo of the RC strategy by video type and the 

effectiveness of the RC strategy from our previous study to both teachers. We discuss 

the function and possible procedure for using this strategy in the five weeks, whole 

class teaching. Since the teacher T2 refuses to apply the RC strategy in his teaching, we 

then go on our study with only teacher T1. 

During the 5 weeks of teaching the chapter of formal multi-steps geometry proof, T1 

uses different coloured chalk pen to show the process of proving: she draws or 

constructs given conditions and intermediary conclusions on the given figure by 

coloured chalk pens and uses the same colour in the congruent configurations. At the 

same time, she asks her students imitate her way in all proving task: taking notes, doing 

exercises and homework. She checks students’ work carefully and ask her students 

strictly to use this strategy. We provide every student in RC class a 8-color pen. The 

classroom activities are video typed and students’ manuscripts are photographed. 

Just after the school test of the chapter of formal multi-steps geometry proof, a post test 

is conducted for both the RC class and the Labelling class. We compare the leaning 

effectiveness of the RC strategy in both quality type of proof from the post test and the 

score from the formal school test. The items of post test are composed with four 

multi-steps geometry proof questions. These items are used in our previous studies 

(Cheng, Y. H. and Lin, F. L., 2006). Fig1 is the item used both in the pretest (item 4) 

and post test (item 1). We use this item to explore what happens from the beginning to 

the end of the teaching. 

 

Fig1. The 2-steps item for comparison 

RESULTS AND DISCUSSION 

The learning effectiveness of RC is better significantly than traditional Labelling 

The score of school test after the teaching and the performance in the post test are 

shown in Table 1. Table 1 show that the score of school test after the multi-steps 
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lessons and the quality distribution of the post test of RC class is significantly better 

than Labelling class. The score of school test is significantly better and the percentage 

of acceptable type in all items is too. This result shows that the RC strategy can be 

applied in whole class regular teaching. And its effectiveness is significantly better 

than traditional labelling strategy in both proof quality and formal school test. 

class RC class Labelling class 

Average 49.21 43.73 Score of  

School tests Standard deviation 24.54 19.50 

item 1 2 3 4 1 2 3 4 

No response 0.0 39.4 12.1 6.1 18.2 21.2 9.1 9.1 

Intuitive response 12.1 0.0 0.0 0.0 12.1 3.0 6.1 0.0 

Improper 15.2 15.2 39.4 36.4 9.1 33.3 60.6 39.4 

Incomplete 12.1 6.1 6.1 15.2 30.3 24.2 15.2 24.2 

performance 

in the 

Post test 

(percentage) 

Acceptable 60.6 39.4 42.4 42.4 30.3 18.2 9.1 27.3 

Table 1: The performance of the samples in the pretest 

The RC strategy enhance the quality distribution of multi-steps geometry proof 

According to Lin, F. L.; Cheng, Y. H. & linfl team(2003), there is about one quarter of 

Taiwan junior high students, while they finish the formal multi-steps geometry proof 

lessons, can construct acceptable proof in an unfamiliar 2-steps question. More than 

one-third of them do not have any response. And approximately one third of them are 

incomplete. We use this item of the national survey both in pretest (item 4) and post 

test (item 1). Comparing the distribution of quality type from this study and the result 

of the national survey (shown in Table 2), we can find out that the percentage of 

incomplete type in the RC class is significantly less than in the national survey. And 

there is no more performance of type of no response. This result show that the RC 

strategy may help many of the ‘potential’ incomplete provers to overcome their 

learning difficulties when learning multi-steps geometry proof in the traditional 

teaching. 

Furthermore, there is no more performance of type of no response is meaningful. It 

shows that the RC strategy may help some ‘potential’ no response students to 

recognize some meaningful information and start to prove. Many students can not start 

to prove because they can not find out any information associate to a suitable 

mathematical property. The coloured subfigure may provide more information which 

is implicit in traditional teaching. 

In conclusion, the RC strategy shows the subfigure which associate to a geometry 

theorem and keeps all information visible and operative. It is helpful to retrieve 

suitable theorem for reasoning and also helpful to reduce the memory loading when 
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organizing several steps into a proof sequence. Duval(2002) proposed that retrieving 

the suitable theorem is one of the key processes in geometry proof and this process is 

highly depend on the theorem mapping. This study shows that the theorem is easier to 

retrieve when the correspondent subfigure is highlight by colouring. 

 acceptable Incomplete Improper 
Intuitive 

response 

No 

response 

National sample 24.6 35.0 0.3 2.8 37.4 

RC class 

in the post test 
60.6 12.1 15.2 12.1 0.0 

Table 2: The distribution of proof quality in the national survey and RC class 

RC is less-effective to non-hypothetical bridging students 

Even the results in this study show that the RC strategy is more effective than 

traditional labelling strategy in whole class regular teaching, there are nearly 40% of 

students can not construct an acceptable proof. In order to investigate the limitation of 

the RC strategy, we conduct a post analysis. We re-code the manuscripts of the pretest 

by considering the performance of hypothetical bridging. The hypothetical bridging is 

a necessary process when proving a multi-steps geometry proof. This process construct 

the intermediary condition (IC) and motivate the second level (Duval, 2002) of proving. 

We categorize students’ performance of the two multi-steps questions in the pretest in 

to three type: (1)hypothetical bridging, it means that the students construct some 

intermediary conditions for the next step of reasoning, no matter the IC is useful or not 

in that question; (2)simple bridging, it means that the students finish the proof by 

applying only one mathematical property, and it is of course not correct; (3)no 

reasoning, such that no response, transcribing the item. The performance of these three 

types of students in the post test is shown in Table 3. Table 3 shows that all the 

acceptable proof comes from the students who are able to prove a multi-steps question 

by hypothetical bridging. There are 19/23 of hypothetical bridging students can 

construct an acceptable proof and no one of non-hypothetical bridging students can di 

it. It is obviously that the RC strategy can not help the non-hypothetical bridging 

students to enhance their proof quality more. Since the main function of RC strategy is 

showing the subfigure which associate to a geometry theorem and keeping all 

information visible and operative, it is more useful in the information processing 

process than overcome the cognitive gap. It may help students to retrieve suitable 

theorem for reasoning and also helpful to reduce the memory loading when organizing 

several steps into a proof sequence but if the students understanding of geometry proof 

is only restricted in the first level (Duval, 2002) of proving, that is applying one 

theorem to bridge the premise and conclusion, then the coloured figure may only help 

the student to find out the first step (and only one step to him/her) to prove. 
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Intuitive 

response 
Improper Incomplete Acceptable 

No reasoning 1  1  

Simple bridging 3 4 1  

Hypothetical bridging  1 3 19 

Table 3: The performance of three reasoning type in the post test 
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GRADE 5/6 TEACHERS’ PERCEPTIONS OF ALGEBRA IN THE 

PRIMARY SCHOOL CURRICULUM 

Helen L. Chick and Kiri Harris 

University of Melbourne 

 

Although there has been a recent push towards having an active “early algebra” 

curriculum in primary school mathematics classrooms, many curricula still leave 

formal consideration of algebra until secondary school. Nevertheless, there are many 

aspects of mathematics in the primary school that prepare students for later algebra 

study. This research used a questionnaire and interview with 14 Grade 5 and 6 

teachers to determine their views and knowledge about algebraic aspects of the 

primary curriculum. As a group, the teachers had only a limited sense of how the 

mathematical activities they utilise in the classroom build a foundation for later work 

in algebra. Furthermore, although they were generally good at recognising the 

correctness of students’ solutions, they did not seem to engage deeply in the students’ 

reasoning, and varied in the views of the value to be placed on some responses.   

INTRODUCTION AND BACKGROUND 

The past decade or so has seen an increased interest in the place of algebraic activities 

in the primary (elementary) school. This is partly because of the importance to algebra 

of generalisable structural arithmetical understanding (e.g., the distributive law, the 

quasi-variables of Fujii & Stephens, 2001), together with the results of studies (e.g., 

Blanton & Kaput, 2004; Warren, 2005) suggesting that “young children can do more 

than we expected before” (Lins & Kaput, 2004, p.64).  

Bednarz, Kieran and Lee (1996) highlight that three of the basic ingredients of school 

algebra are the generalisation of patterns (such as number patterns or geometric 

patterns), the generalisation of numerical laws, and functional situations. Kieran (1996, 

2004) groups these together under the heading generational activities, because each 

involves the production of some object of algebra: an equation relating quantities, a 

description or relation capturing the generality of a pattern, or a rule that describes 

some general numerical behaviour (see Kieran, 2004, pp.22-24). She points out that 

while there has been a focus on developing facility with manipulation (something that 

most adults recognise from their own secondary school algebra experiences, and which 

many might characterise as being algebra), she also emphasises the need for a 

conceptual understanding of the objects of algebra, and suggests that “noticing 

structure, justifying and proving have been sorely neglected in school algebra” (p.31). 

More recently, she has stressed the importance to “early algebra” of analysing 

relationships, generalising, noticing structure, and predicting, as these are ways of 

thinking that are foundational for conventional “letter-symbolic algebra” (Kieran, 

2006, p. 27).  
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One class of generational activity sometimes conducted with primary school students 

involves pattern recognition, often based on a visual design that “grows” iteratively in 

a sequence. Blanton and Kaput (2004) looked at very young children’s ability to 

describe functional relationships and found evidence for co-variational reasoning, or 

keeping track of how one variable changes with respect to another. Warren (2005) 

found that Grade 4 children are capable of thinking functionally, and can describe—at 

least in visual terms—how a pattern is generated. Not surprisingly, describing a design 

according to its position in the sequence is harder than describing the progression from 

one design to the next. Rossi Becker and Rivera (2006) found similar results with 

Grade 6 children, and examined how figurative reasoning usually results in greater 

success than reasoning with numerical quantities alone.  

In Australia, where the preparation of primary teachers through university courses 

usually involves the content and pedagogy of the primary school and little formal study 

of secondary mathematics, most primary teachers have little expertise in algebra apart 

from that encountered in their own secondary schooling. With this in mind, and with 

the belief that primary school students should be engaged in activities that prepare 

them for algebraic thinking (in all the senses identified by Kieran), we will examine, to 

a small degree, the algebraic beliefs and knowledge of primary school teachers. The 

present research looks at two questions: first, what aspects of primary school 

mathematics do teachers think serve as preparation for high school algebra; and, 

second, what features do they focus on in students’ responses to a pattern recognition 

question?   

METHOD 

This investigation was part of a larger study investigating the pedagogical content 

knowledge of Grade 5 and 6 teachers in an Australian state. The 14 participants were 

volunteers, whose teaching experience ranged from 2 to 22 years. The study involved a 

questionnaire, interviews, and the observation and video-taping of a few lessons. The 

data considered here came from the questionnaire and follow-up interview conducted 

at the beginning of the study. The 17-item questionnaire covered a range of 

mathematical content and pedagogical issues. Teachers responded to the questionnaire 

in their own time, with no restriction on accessing resources, and the follow-up 

interview allowed the researchers to probe for elaboration and clarification. The 

interview questions thus varied from teacher to teacher, depending on their written 

questionnaire responses and the time available for the interview.  

Two questions from the questionnaire are the focus of this investigation. The first 

asked teachers “What aspects of the primary school mathematics curriculum do you 

think prepares students for Algebra in secondary school?” The second item, shown in 

Figure 1, immediately followed the first and provided teachers with an algebraic 

patterning item, together with sample correct and incorrect student responses. They 

were asked to indicate how they might respond to the students, and to discuss the role 

of such items in the primary school. 
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Data from both the written questionnaire responses and the teachers’ interviews have 

been combined, and are not distinguished except where changes in response occurred. 

The first question and the last part of the second provide information about the 

teachers’ understanding of algebra’s place in the curriculum. Responses to the first part 

of the patterning question provide insights into the teachers’ understanding of algebra 

itself, and how they recognise and address their students’ understanding. 

Figure 1: Patterning item as presented on the questionnaire. 

RESULTS 

The primary school curriculum as a preparation for secondary school algebra 

The aspects of the primary school curriculum that prepare students for algebra in 

secondary school that were mentioned by the teachers are shown in Table 1, together 

with the number of teachers mentioning each one. In some cases it is not clear what 

teachers meant by certain suggestions, and the interview did not pursue this due to time 

constraints or a focus on other items. It is conceivable that teachers may have meant 

“patterning activities” by “problem solving”, since that kind of activity often arises 

under the guise of problem solving, although three teachers specifically mentioned 

both. “Magic squares” are possibly a particular kind of missing number activity, in 

which students determine the numbers that belong in the empty spaces of a magic 

square having constant row and column totals. 

Your students are doing the following exercise on patterns: 

Use the matchstick shapes to assist you to complete and extend the grid, then find a rule that 

will match the grid. 

 

 

Number of Triangles 1 2 3 4 5 6 7 8 9 10 

Number of Matchsticks 3 5         

 

Here are some examples of rules that students have produced: 

Student A: (number of matches) = (number of triangles) × 2 + 1 

Student B: (number of matches) = (number of triangles) × 3 + 1 - (number of triangles) 

Student C: (number of matches) = (number of triangles) × 3 - (number of triangles - 1) 

Student D: (number of matches) = (number of triangles) + 2 

Student E: Add two more each time 

 

What would be your response to each of these students? 

Why do you think these kinds of pattern activities are included in the primary school 

mathematics curriculum? 
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Topic area Number of 

teachers 

Missing number/empty box/cloze problems 7 

Patterns (generational activities) 6 

Order of operations/properties of operations 6 

Problem solving (e.g., with tables/lists) 5 

Realising letters can stand for a number 5 

Substituting into a formula (e.g., A = L x W) 3 

Ratio problems; Understanding of equals sign; Magic squares 2 

“Number sense”; Negative numbers; Finding common denominators; 

Multiplication and division*; Units for area and volume*; Congruent 

shapes*; Formulating rules 

1 

Table 1: Number of teachers indicating different primary school topics as  

preparatory for secondary school algebra. [In responses marked with a *  

it is not clear what algebraic aspect might have been meant.] 

Many of the topics mentioned were what might be expected, although as can be seen 

no topic was mentioned by more than half of the teachers. The most common response 

was “missing number” problems, an activity with an “unknown” symbol. Such 

problems resemble the “solve” symbolic manipulation tasks that many regard as 

typical of high school algebra, despite the fact that such problems are often solved by 

arithmetic approaches rather than algebraic ones (see Filloy & Rojano, 1989). 

Teachers also mentioned pattern generation activities and order of operations as 

important, with two teachers, who may have experienced similar professional 

development in pre-algebra ideas, making specific mention of the distributive law.  

All but three of the teachers mentioned two or more topics, although only four could 

list five or more. One of the teachers made no suggestions, writing “I honestly don’t 

know as I didn’t really do secondary school maths and never had any success at maths 

in secondary school”. Another of the teachers with a limited response indicated that 

she felt the curriculum introduces algebra in secondary school and so very little is done 

at primary school level. In her interview, however, she expanded on the importance of 

functions and number patterns as a transition to secondary schooling. She also 

commented about a question we had included on a student quiz, which involved 

generalising a pattern in order to predict the 100
th
 term. She said “Probably I wouldn’t 

go to what’s a hundred of that. I might go to five or something, so they can work it out, 

but not necessarily that generating patterns, which I think is something I’d like to 

explore.” This suggests she may have a limited awareness that asking for 

big-numbered terms can force students to generalise properly, rather than just iterating 

through the first few terms. 
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Responses to the second part of the patterning question provided further insight into 

teachers’ perceptions of the purpose of this kind of activity. Nine of the 14 teachers 

explicitly stated that such activities lead to algebra, with one of these suggesting that it 

can help with the introduction of symbols. Two of these nine also emphasised affective 

issues, indicating that if students encounter such activities in primary school they will 

not be as “fearful” about algebra in high school. Nine of the teachers (six of whom had 

mentioned algebra) viewed pattern recognition and description as important for 

mathematics or real life in general, listing one or more of generating, creating, seeing, 

or developing rules for patterns as significant skills for students. Six of the teachers 

also emphasised the thinking skills that such activities develop, with another three 

mentioning that the activity can develop problem-solving skills. 

Although the teachers were not asked about the extent to which they conducted 

patterning activities in their own classrooms, most of the teachers’ comments implied 

or explicitly stated that they used such tasks. One of the Grade 5 teachers, however, 

said that although she had seen this kind of question she had not used them. Some 

teachers also commented on their students’ engagement and facility with these 

activities. One wrote “I don’t think it is a particularly easy concept to develop and 

children need time to ‘play’ with ideas and understandings”. Three of the teachers 

made specific reference to higher ability children, with one saying  

Because I think that that’s what makes the brainy kids. That’s what makes the kids who are 

very good at maths, I believe that they’re actually fantastically fast at picking up the pattern, 

using patterns they’ve used previously, and applying them. 

Algebraic understanding evident in responses to the patterning item 

We now examine the understanding of algebra and student reasoning evident in 

teachers’ responses to the first part of the patterning item. From the questionnaire 

results, eight of the teachers correctly recognised the erroneous response from Student 

D, with a further three realising the error in the interview, in one case prompted by the 

interviewer. Two of the teachers did not comment on correctness, and the final 

teacher—who had not listed any pre-algebraic aspects of primary school mathematics 

in response to the first question—indicated that he thought “all of these students are 

correct in their own way”. He said that he liked D, but added that “with all of them they 

need to explain them to me”.  

The teacher who had commented about students needing time to develop facility with 

pattern activities was one of the very few who gave a detailed description of how she 

would respond to the students, which she did in such a way that she clearly revealed 

how well she understood their reasoning. Her responses were written as if she was 

talking to the student concerned: 

A: Yes, this formula appears to work. Well done! How did you come up with it? 

B: Yes, this formula does work. Is there an easier way of writing it? If you are multiplying 

by 3 and then later subtracting the number of triangles, isn’t it the same as saying 

(number of triangles) x 2 + 1? 
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C: Yes, this formula does work. There are quite a few steps to it. Is there an easier way of 

writing it? 

D: While this formula works for the first triangle it does not work for the rest of the 

pattern. Let’s test it out. I think you have created this formula because adding a new 

triangle to the pattern requires two more matchsticks. So, in theory it sounds like it 

should work. How could we use multiplication in our formula? 

E: Yes, that will work if you know what the preceding number is. However, what if we 

want to work out how many matchsticks are used to make 23 triangles? I think we need 

to find a quicker formula that does not mean we have to work out the preceding 22 

triangles. 

Only one other teacher really indicated an understanding of the thinking that might 

have led to Student D’s response. Nobody else showed serious engagement with the 

details or possible derivations of the formulae produced by the students—with the 

exception of E—despite most stating that A, B, C and E work. Presumably they 

checked the outputs of the formulae against their own data. All of the teachers gave 

some indication of which responses they thought were “better” than others, although 

they varied in what they meant by “better”. Nine of them commented about responses 

B and C being “complicated” or “less efficient” in comparison to A, and expressed a 

hope that students—or at least their more able students—would be able to find an 

“easier way”. One of them, however, actually rated B and C more highly because of 

the complexity. Only one teacher said that she valued having multiple solutions and 

that “you need to be able to see that they’re all valid, logical paths”. She did not, 

however, suggest that exploring the equivalence of such solutions might be significant 

(see also APPA Group, 2004). 

Six of the teachers commented that they liked the fact that Student D, though incorrect, 

had tried to express a rule in a relational way, with some of them even preferring this to 

Student E’s correct, but non-equational, response. In fact, reactions to Student E’s 

solution were polarised, with some regarding it as good and others as poor. The eight 

teachers who seemed to regard it negatively commented that it was “too simplistic”, 

that the student “can identify a pattern, but they’re not necessarily patterns within 

relationships […], they need to relate it to the number of triangles”, or that the student 

“hasn’t taken time to find a rule that is more detailed”. One of the teachers suggested 

that Student E would struggle with more difficult problems, although he has “got the 

basics”. In contrast, other teachers felt it was good that E had spotted the pattern so 

quickly, and that it was “nice and simple”. In fact, at least one of the teachers actually 

seemed to struggle herself with the covariational ideas expressed in responses A, B and 

C, ane appeared much more comfortable with Student E’s solution. Only four of the 

teachers actually explained the limitations of Student E’s response in terms of the 

relationship being given iteratively. They pointed out that you cannot work out the 

answer for a given number of triangles without knowing the preceding term.  
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Finally, in light of the work of Rossi Becker and Rivera (2006), we note that none of 

the teachers’ comments suggested an appreciation of the fact that a formula or 

description of a relationship usually depends on the way the pattern is perceived.   

DISCUSSION AND CONCLUSION 

Before discussing the results, we must note there were many other questions on the 

questionnaire and interview, and that these items were late in the questionnaire. This 

may have affected the quality of the teachers’ responses. Furthermore, the items and 

questions did not specifically target some of the aspects we have discussed, such as the 

effect of perception on pattern description. The results should be viewed with these 

limitations in mind, although we can still draw some important conclusions. 

Among these teachers, at least, there is some awareness of the kinds of algebraic ideas 

that can be fostered in the primary school. Unfortunately although all but one could 

contribute at least one reasonably strong pre-algebraic concept (missing number 

problems, patterns work, order of operations, importance of the equals sign, realising 

letters can stand for a number, or formula substitution), only six could list three, and 

the fact that no more than half of them listed any one of the topics is also of concern. 

The only time teachers explained how a given aspect contributed to algebra learning 

was in the fairly obvious case of the missing number problems. 

For some teachers, this limited perspective may be due to their own educational history, 

as evident in the explanation from the teacher who could not list any content areas. One 

of the older teachers, who explained that her mathematics teaching had undergone a 

transformation as part of professional development she had undertaken, explained that 

as far as the patterning item was concerned that “I’ve not had a lot of experience with 

that sort of thing, but I think it’s something that we really need to get the kids doing … 

I didn’t get that sort of thing when I was at school”.  

There are positives and negatives to note in the teachers’ engagement with the 

patterning item, too. Most were able to recognise the correctness or otherwise of the 

students’ responses, and could offer reasons for their judgements of which responses 

were better. What was missing, though, was a deep engagement in the mathematical 

and algebraic underpinnings of the activity. Again, this may be a consequence of 

educational background, and the experience and training the teachers may have had (or, 

more likely, may not have had) in conducting this kind of task.  

Given the power of pattern recognition and similar generational activities for 

developing facility with algebraic concepts—whether noticing structure, generalising, 

developing functional reasoning, using symbols, or even manipulating symbols—it 

seems that more needs to be done to help teachers understand what the key aspects are 

and how they contribute to the understanding that needs to be developed in the 

secondary school. It is also evident that teachers may need more guidance to help them 

use generational activities in an effective way in the classroom. This would allow them 

to make better judgements about the correctness, derivation, value, and problematic 
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aspects of different approaches that students might take, and provide better assistance 

to students as they engage with the task.   
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This study investigates the influence of inquiry-based mathematics teaching on high 

achievers’ metacognitive abilities. The research subjects were 28 eleventh graders 

high performance in learning mathematics. A mixed methodology combing qualitative 

and quantitative approaches was used to investigate students’ metacognition in an 

inquiry-based classroom environment. The main research instrument for collecting 

quantitative data was the Metacognition Inventory questionnaire which was conducted 

before and after the inquiry-based lessons. The qualitative data, such as interviews 

with students, videotaped classroom teaching, students’ work sheets and feedback 

sheets, and teacher’s journals, were also collected and analysed. Results indicated 

that there was weak but no significant correlation between student’s mathematics 

achievement and their metacognition. Besides, students could develop significantly 

better metacognitive capacities after receiving the three-month inquiry-based 

mathematics teaching. Moreover, we also discussed how inquiry cycle is related to 

metacognitive components.  

INTRODUCTION  

How teachers can help students participate in the process of knowledge construction 

has been a central issue in the debate on mathematics education (e.g., Ben-Chaim, Fey, 

Fitzgerald, Benedetto & Miller, 1998; Inagaki, Hatano & Morita, 1998; Lampert, 

1990). Within the contribution to this debate, educators and researchers are convinced 

that students need to have ample opportunities to progress from concrete to abstract 

ideas, rethink their hypotheses and adapt and retry their investigations and problem 

solving efforts (Hinrichsen & Jarrett, 1999). Teachers ought to provide certain kinds of 

experiences in which students are able to work as young mathematicians or researchers. 

In short, students should develop their mathematical knowledge through inquiry-based 

teaching. The inquiry teaching methodology is built on the Principles and Standards 

for School Mathematics (National Council of Teachers of Mathematics [NCTM], 

2000) and the report of Project 2061’s benchmarks (American Association for the 

Advancement of Science [AAAS], 1993). They both assert that inquiry as a 

high-quality teaching to engage students in the processes of learning and creating 

mathematics and also recommend that students should have the ample opportunities to 

utilise inquiry cycle in carrying out their own mathematical investigations when 

learning mathematics. The essential traits of inquiry that can be generated from some 

reports (e.g. AAAS, 1993; Hinrichsen & Jarrett, 1999) are concluded as follows: 
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connecting former knowledge and experiences with the problem as learners have, 

designing procedures (plans) to find an answer to the problem, investigating 

phenomena through conjecture, constructing meaning through use of logic and 

evidence and reflection. 

Metacognition takes on importance in mathematical classroom because research 

evidence has shown that enhancing students’ metacognition could lead to 

corresponding improvements in learning outcomes (e.g., Baird & Northfield, 1992). 

The concept of “metacognition” is defined as one’s knowledge concerning one’s own 

cognitive processes and awareness of a mathematical problem that involves the 

process of planning, monitoring and evaluation of a specific problem solution (Flavell, 

1976, 1992). Following Flavell’s studies, researchers investigated many aspects of 

metacognition in mathematics education, such as Schoenfeld’s work (1987, 1992) on 

comprehensive analysis of metacognitive processes in problem solving, which put 

more emphasis on mathematical thinking and problem solving processes. Recent 

studies appeared some major common elements which can characterise good 

instructions that enhance students’ metacognition (e.g. Kramarski, Mevarech & Arami, 

2002; Mevarech & Fridkin, 2006). These instructions should focus on: (a) 

comprehending the problem; (b) constructing connections between previous and new 

knowledge; (c) considering strategies appropriate for solving the problem; (d) 

reflecting on the processes and solution. By means of analysing the essential traits of 

inquiry compared with these suggested instruction focuses, it seems reasonable to 

hypothesise that inquiry-based teaching may promote students’ metacognition. 

As we mentioned above, research has proven high metacognition could produce high 

achievement. However, Alexander, Carr and Schwaneflugel’s (1995) indicate that 

research does not support the viewpoint that high achievers have vastly better or more 

advanced metacognitive abilities in all areas of metacognition, but it appears that high 

and low achievement children are equally capable of using some metacognition. The 

result of International Assessment of Educational Progress [IAEP], a large-scale 

international achievement survey, reveals that Taiwanese students were with high 

performance in mathematics but weakness in higher order thinking skills. The main 

reason might be most schools in Taiwan tend to remain a conservative pedagogy with 

behaviourist paradigms to teach mathematics. Therefore, this study is designed to 

explore how the inquiry-based mathematics teaching influences on high achievers’ 

metacognition developing. 

THEORETICAL FRAMEWORK 

Inquiry-based mathematics teaching 

The inquiry based-teaching could be supported by the use of inquiry cycle (Siegel, 

Borasi & Fonzi, 1998). Lawson, Abraham, and Renner (1989) proposed an E-I-E 

(Exploration, Invention, and Expansion) inquiry cycle which has long term been 

considered within inquiry teaching and modified or refined into various frameworks. 

In Exploration phase, it should provide students with the opportunity to bring out prior 
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knowledge, explore a range of phenomena for themselves, and experience a 

confrontation to their own way of thinking. In Invention phase, it should help students 

organise their information from the Exploration phase. Besides, the teacher should 

consider how the idea or skill is modelled or demonstrated. In Expansion phase, the 

goal is to help students finish restructuring old beliefs, old knowledge structures and it 

is also important to help students apply and transfer the new idea to new situations. 

Although there are some later frameworks of inquiry cycle using different terms to 

elaborate their structures, the basic theoretical backings still seem to fit under the core 

ideas of the E-I-E model. Therefore, for simplifying and effectively applying the 

inquiry cycle, we do not consider the later frameworks but adopt E-I-E model as the 

main approach to address our inquiry-based teaching.  

Metacognition 

Flavell (1979) defines metacognition as “thinking about thinking”, and elaborates 

metacognition as (i) awareness of how one learns; (ii) awareness of when one does and 

does not understand; (iii) knowledge of how to use available information to achieve a 

goal; ability to judge the cognitive demands of a particular task; (iv) knowledge of 

what strategies to use for what purposes. He also distinguishes between two 

components of metacognition: (a) knowledge of cognitive processes and products; and 

(b) ability to control, monitor, and evaluate cognitive processes. Flavell argues that 

knowledge of cognition depends on the following inter-related components: 

metacognitive knowledge about self, the task and strategies; knowledge about how to 

use the strategies; and metacognitive experience. The later refers to one’s feeling about 

being successful (or unsuccessful) in performing the task. According to this model, the 

metacognitive knowledge leads to strategy use which in turns affects the metacognitive 

experience that affects the acquisition of metacognitive knowledge and so on. 

Corresponding to Flavell’s focusing on metacognitive knowledge, Brown (1987) 

outlines metacognition as (i) an awareness of one’s own cognitive activity; (ii) the 

methods employed to regulate one’s own cognitive process and (iii) a command of 

how one directs, plans and monitors cognitive activity. Stating differently, 

metacognition is made up of active checking, planning, monitoring, testing, revising, 

evaluating, and thinking about one’s cognitive performance. 

METHODOLOGY 

Subjects 

The research subjects of this study were twenty-eight 11th graders (all girls) who were 

selected from the whole grade with the best performance in mathematics in a famous 

girl’s senior high school in Taiwan. These students were graded within 93% in 

mathematics in the national high school entrance examination. 

Data collection 

For the quantitative data, we collected students’ average mathematics scores in last 

academic year (10th grade) and student’s performance on Metacognition Inventory 
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questionnaire [MI] (adopted from Chang, 1994) which was administered at the 

beginning (pre-test) and end (post-test) of the three month inquiry-based teaching 

practice. The instrument, MI was designed to assess student’s metacongition with six 

subscales: (i) Selective Attention (SA): deciding to attend to specific aspects of input; 

(ii) Organising (O): the act of rearranging the information which one gets from SA; (iii) 

Strategising (S): planing or using appropriate strategies in solving the problem; (iv) 

Self-Testing (ST): assessing how much one understands by self-questioning; (v) 

Self-Monitoring (SM): the activities that moderate the current progress of learning; (vi) 

Self-Correction (SC): correcting errors and implementing remedial or changing 

strategies. The MI comprised 48 items distributed across the six subscales (8 items per 

subscale) on a 4-point Likert scale reflecting student’s metacognitive behaviours as 

“1” means strongly disagree, whilst “4” means strongly agree. Furthermore, this 

questionnaire was piloted with 138 alternative high achievers from the same school 

and obtained acceptable Cronbach’s α coefficients as follows: SA, 0.665; O, 0.797; S, 

0.736; ST, 0.723; SM, 0.732; SC, 0.771; total scale, 0.927. 

On the other hand, for the qualitative data, we collected videotaped classroom teaching, 

teacher’s journal, students’ semi-structured interview results, and feedback sheets after 

each class. These qualitative data were analysed to explain or elaborate the quantitative 

results for interpreting the relationship between inquiry-based teaching and student’s 

metacognition growth. In particular, the semi-structured interviews were conducted 

individually to the subjects who were considered as worth of further investigation for 

15-30 minutes after each inquiry-based lesson (totally five) and also after they 

completed MI in the beginning and the end of this study.  

Procedures 

Strictly speaking, this study spent almost two years which was from January 2005 to 

December 2006. The whole research can be categorised into three periods: (a) the first 

period (January 2005 ~ February 2006) serves as a warm up and preparation for the 

participant teacher implementing inquiry-based teaching. The teacher joined a 

university-based professional development project which was funded by National 

Science Council in Taiwan. This project aimed to enable in-service teachers to apply 

inquiry-based mathematics teaching in their classrooms. After over one year of 

participation, the participant teacher was recognised having enough skills to teach 

through inquiry. (b) In the second period (February ~ August 2006), the participant 

teacher collaborated with a mathematics educator and a group of mathematics teachers 

to design curricula that are suitable for inquiry-based teaching. Meanwhile the 

participant teacher also started to introduce collaborative learning in his classroom for 

encouraging students to engage in sense-making and discussions. Because literature 

indicates that inquiry method is high correlated with collaborative learning strategies, 

taking place collaborative leaning could enhance inquiry-based teaching. (c) In the 

final period (September ~ December 2006), inquiry-based teaching was conducted in 

the subject class. The students answered the MI as pre-test and post-test before and 
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after this period. All the qualitative and quantitative data were also collected during 

this period.  

RESULTS AND DISCUSSION 

Table 1 reports the relationship between students’ mathematics average scores in last 

academic year and the scores in the pre-test of the MI. Analysis of the data showed that 

there was weak but no significant correlation (r=.201, p=0.15) between student’s 

mathematics achievement and their metacognition. The only significance appeared in 

Selective Attention (r=.334, p< 0.05) and it remained weak. These results may imply 

that the linear relationship between mathematics achievement and metacognition did 

not occur with these high achievers. It seems reasonable to claim that these high 

achievement students did not correspond to high metacognition capabilities. This 

claim might be consistent with the typical Taiwanese high achievers’ performance as 

mentioned earlier in this paper. In addition, based upon their initial MI scores (M=2.66 

in pre-test, see Table 2) and the qualitative data we collected, our claim seems to be 

confirmed: 

T: Although my students could obtain high mathematics test scores, they did not perform 

well in dealing with open tasks; most students could only apply straightforward and 

limited strategies. They weakly showed metacognitive awareness. (20060910 teacher’s 

journal) 

S12: I thought I am lack of this kind of ability (metacognition). I am not good at organising 

the problem information and pursuing my thinking approaches. I think it is better that 

the teacher can directly talk about what I don’t know. (20060901 interview) 

 

 

1. MA: Mathematics Achievement, SA: Selective Attention, O: Organising, S: 

Strategising, ST: Self-Testing, SM: Self-Monitoring, SC: Self-Correction 

2.   *, p< 0.05 

Table 1: Correlations between mathematics achievement and metacognition subscales 

Table 2 exhibits means and standard deviations on MI (including sub-scales) of both 

pre-test and post-test. The difference of total scale between the pre-test and the 

post-test was highly statistically significant (t=4.56, p< 0.001). In other words, 

students performed better metacognition including all components in the post-test than 

in the pre-test. Subsequent analysis of subscale scores also revealed highly significant 

changing form pre-test to post-test. This result appears to suggest that inquiry-based 

teaching was effective in helping students’ development of metacognitive abilities.  

S23: I feel I’m better on understanding the problem because the new teaching method is not 

only interesting to me but also helpful to think more deeply. (20060915 feedback sheet) 

S10: I was used to waiting for teacher’s solution but now I find more chances to explore 

and analyse the problem by myself and our team. (20061109 interview) 

 SA O S ST SM SC Total 

MA (N=28) .334* .162 .069 .216 .021 .209 .201 
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S1: In inquiry teaching, I have more opportunities to try different approaches to a problem 

and discussion which can also inspire me with new ideas. (20061109 interview) 

*, p< 0.05; **, p< 0.01; ***, p< 0.001 

Table 2: Means and standard deviations of pre-test and post-test  

Comparing all subscale’s scores in the pre-test, Self-Testing appears the lowest scores 

(M=2.25) within these six sub-scales. Although it significantly increased in post-test 

(t=4.60, p< .001), it still remains as the lowest over all subscales in the post-test 

(M=2.61). It seems that students were less likely to examine how much they already 

know or to determine whether they truly understand. This finding was also parallel to 

the research which indicates that this kind of regulated ability develops slowly and is 

quite poor in children and even adults (Pressley & Ghatala, 1990). In further analysis 

of the items within this subscale (Table 3), we found that the items 2 and 5 show lower 

mean scores in pre-test (M
item2

=1.25; M
item5

=1.50) and post-test (M
item2

=1.82; 

M
item5

=1.96). This result might indicate students were less likely to assess what they 

know by questioning themselves. The following quotation of the teacher’s journal 

could be a note: 

    T: Students are used to solving given problems but have fewer experiences to pose 

problems by themselves. I think this is the reason why they obtain lower ST scores. 

However, in inquiry-based teaching, they could have more opportunities to generate 

new problems. This may encourage them to ask problems for checking what they have 

learned. (20061211 teacher’s journal) 

Moreover, the post-test score of item 4 (M=2.00) is slightly lower than the pre-test 

(M=1.96). Unexpectedly, it seems that students were less likely to examine their 

understanding by extra mathematics problems, both before and after the inquiry-based 

teaching. The reason might be that they would rather focus on fewer problems which 

seem worth undertaking than practice too many routine problems. The following 

response of a student could offer some evidence: 

S6: It’s great when we work together to investigate a worth undertaking problem. I can take 

advantage from discussing with my team members. I suggest not to work on too many 

problems but to have more time on thinking or discussing with others. (20061031 

feedback sheet) 

Pre-test Post-test 
(N=28) 

Mean (SD) Mean (SD) 
T p 

A 2.91 (.35) 3.12 (.28) 3.35 .002** 

O 2.64 (.41) 2.89 (.39) 3.04 .005** 

S 2.89 (.42) 3.17 (.41) 3.17 .004** 

ST 2.25 (.50) 2.61 (.40) 4.60 .000*** 

SM 2.56 (.43) 2.97 (.45) 4.43 .000*** 

SC 2.73 (.52) 2.94 (.44) 2.56 .016* 

Total 2.66 (.36) 2.95 (.32) 4.56 .000*** 
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*, p< 0.05; **, p< 0.01; ***, p< 0.001 

Table 3. Means and standard deviations on Self-Testing of pre-test and post-test 

In addition, after analysing all the qualitative data, we also tried to identify how the 

inquiry-based teaching was related to metacognition subscales which occurred in this 

study. Some results might be concluded as follows: “Selective Attention”, and 

“Organising” seemed to take place during the Exploration phase of the inquiry cycle; 

“Strategising” and “Self-Testing” appeared in the Invention and Expansion phases; 

and “Self-Monitoring” and “Self-Correction” happened across all the phases. For 

example, when students engaged in the lesson “Circle and Sphere”, they needed to 

recall their prior knowledge about circle (Exploration-O), focusing on how circle can 

be defined and their properties (Exploration-SA), discussing and modeling their 

thinking (Invention-S & ST), applying their conclusion to Sphere (Expansion-O & S). 

CONCLUSION 

Enhancing students’ metacognition is not a straightforward process by any means. A 

key factor influencing students’ propensity to enact their matacognitive capacities is 

their perception of the classroom environment, including how they are taught and also 

the broader culture within the classroom. In this study, we constructed an 

inquiry-based learning environment for the students who were asked to personally 

construct their own understanding by posing questions and considering how 

investigations will proceed and how findings are analysed and communicated 

(Hinrichsen & Jarrett, 1999). The results support that these arrangements are 

meaningful in stimulating student’s metacognition growth. Although there seems no 

enough direct evidence to prove that the inquiry-based mathematics teaching is a 

warranty for student metacognition development, it still can be a useful guide for 

helping teachers to make the most of metacognitive learning experiences for students. 

Therefore, we might be able to argue that the inquiry-based mathematics teaching 

method may serve as a catalytic metacognitive experience that informed students about 

what was for some an alternative conception of learning. 
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This research explores the effects of spatial geometry curriculum utilizing 3D dynamic 

geometry software (3D DGS) in lower secondary school mathematics. The analysis 

was done by comparing the results of experimental groups with that of control groups 

in a school (Japan), as well as results of the national survey of Japan. In conclusion, 

positive effects were identified regarding the construction of spatial figures by moving 

a plane figure and the explanation for a spatial figure represented on a plane, along 

with multiplier effects recognized in the relationship between cognitive and affective 

aspects. 

INTRODUCTION 

Dynamically manipulable interactive graphical representation of technology 

contributes to the teaching and learning of geometry. Drag mode is a key element of 

Dynamic Geometry Environments (DGEs). For example, researchers stressed the key 

role of dragging in forming mathematical conjectures and categorized different kinds 

of dragging (Healy, 2000 etc.).  

Until now, 2-Dimensional DGEs have been the target of research, and researchers have 

suggested that the dynamic function of computer software makes its use especially 

powerful (Cuoco &Goldenberg, 1997; de Villiers, 1998; Goldenberg & Cuoco, 1998, 

etc.) However, researchers have claimed that students looked at diagrams differently 

from the way their teachers intended them to (Yerushalmy and Chazan, 1990, etc.). We 

need to take into account that students often “walk around” their own world in a 

mathematical situation when we design student-centered learning environments. 

On the other hand, Laborde et al. (2006) pointed out the following with regard to 

overall technology utilization, “In most countries technology is not yet fully adopted 

by teachers. As a consequence there is very little research that has been done on 

geometry curricula that start from scratch with technology” (p. 290). To improve this 

situation, environments that the teacher can more easily adapt have also been provided. 

For example, in Japan, Iijima has developed a website
1)
 where interesting problems 

and situations using 2D DGS “Geometric Constructor” for students are presented. 

Some of that content was developed through discussions with users. 

In addition, regarding DGE generally, it remains unsettled questions such as “The 

design of adequate tasks” and “How does teacher manage the use of technology in 
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taking into account the curriculum” (Laborde et al., 2006, p. 296). Particularly with 

3-Dimensional DGEs, although 3D DGS have been developed, curriculum 

development considering “epistemological impact” (Balacheff & Kaput, 1996, p. 469） 
has not been conducted, nor the effect of the developed curriculum been verified.  

The purpose of this paper is to explore the relationship between cognitive and affective 

impact of spatial figures in a “SPATIAL GEOMETRY” curriculum that utilizes 3D 

DGS. 

METHODS 

“SPATIAL GEOMETRY” Curriculum 

“SPATIAL GEOMETORY” curriculum
2)
 is composed of “Construction of 3D 

figures” (six lessons in total), “Cutting of 3D figures” (five lessons in total), and 

“Surface Area and Volume of 3D figures” (three lessons in total). It is supported 

through the context of “Let's make stamps cutting available materials”. First, students 

look at various types of stamps and get motivated by thinking “I want to make one all 

by myself”. Then he/she discovers and verifies the characteristics of spatial figures 

which the stamps are composed of. In addition, the students do all kinds of things to 

figure out what kinds of spatial figures are adequate to make various kinds of stamps 

by cutting. In this way, the curriculum has the intended contents and activities 

embedded within it and takes into consideration the complementation of vertical and 

horizontal mathematization. 

“SPATIAL GEOMETRY” curriculum is characterized as follows from the (a) learning 

environment, (b) learning content, and (c) learning activity points: (a) Students can use 

the real things (such as “Polydron” and solid models, etc.), sketches, and 3D DGS 

interactively while comparing the results of them. In addition, one computer per pair of 

students is prepared for them. (b) Connections between the mathematical contents and 

daily life or other areas of school mathematics are enhanced. (c) Activities with “the 

concept formation of spatial figures”, “logical thinking”, and “representations of 

spatial figures” are embedded respectively. For these activities, the use of the 3D DGS 

will facilitate the three following possibilities. 

• The possibility of exploring spatial figures those are physically difficult to 

construct or operate. 

• The possibility of multilaterally observing the process of construction or 

operation of 3D figures in the dragging. 

• The possibility of cultivating logical thinking about spatial geometry with 

dynamic transformations and multilateral observations. 

Questionnaire 

The questionnaires are composed of questions regarding students’ recognition and 

consciousness of spatial geometry and its learning. 
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To collect quantitative data on students’ competencies (cognitive aspects) regarding 

spatial geometry, we used questionnaires which were designed for comprehensive 

surveys on the implementation of the Japanese national curriculum. These surveys are 

known as “Kyoikukatei-zishijyokyo-chosa” (2001 & 2003) in Japanese. From here on 

in, these surveys will be referred to as “National survey 2001 (or 2003)”. In the 

national survey 2001 or 2003, target classes were randomly selected with stratified 

sampling from all over Japan. In addition, each of the surveys was conducted in 

February of those years. More specifically, among the questions regarding students’ 

recognition, this paper covers two questions. One is the question describing that a 

spatial figure is composed of the movement of a figure in the plane (2003: No. 1A13 

(1)) and the other is the question that captures the length of a line segment in a sketch of 

cube and states the reasons for that (2001: No. 1B12, and 2003: No. 1B12). 

On the other hand，to collect quantitative data on students' emotional experiences 

(emotional aspects) regarding the learning of spatial geometry, we designed a specific 

questionnaire. And more specifically, of the questions regarding consciousness, this 

paper covers the part that students reflects the construction and the cutting of spatial 

figures respectively from three points of view (“understanding”, “interest level”, and 

“usability”). 

Participants and Procedure 

Targeted classes belonged to the seventh grade at a public junior high school in Japan, 

and at the point of before conducting the curriculum there are no significant difference 

statistically regarding scores on regular examinations between classes that followed a 

“SPATIAL GEOMETRY” curriculum using 3D DGS (Experimental group: n=66) and 

a class that was compliant with the Japanese national curriculum announced in 1998 

(1998CS) (Controlled group: n=32). The “With 3D DGS” and “1998CS compliant” 

classes were compared using the questionnaire method. In addition, survey results 

from the 3D DGS classes and the national survey are compared. 

Lessons were implemented from Jan 23 to Mar 6, 2006 (16 lessons in total), and a 

survey via questionnaire was conducted on Feb 28, 2006 after the Lesson 12 in 

“SPATIAL GEOMETRY” was implemented (on Feb 24). Moreover, in the 3D DGS 

classes, various qualitative data were collected based on research field notes, VTRs, 

and worksheets. 

RESULTS AND DISCUSSION 

Construction of a Spatial Figure by Moving a Plane 

Survey Question 1 (2003: No. 1A13 (1)) “You want to make a cylinder 

by moving a plane figure. What kind of plane figure do you use and how 

can you move it? Explain how in the column □. If necessary, you can 

also use diagrams.” 
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Table 1: Construction of a cylinder with different groups 

Group Pass Fail Total 

Classes in a same School    

With 3D DGS (n=66) 86.4% 13.6% 100  

1998CS Compliant  (n=32) 56.3% 43.8% 100 

National survey 2003 (n=3617) 56.2% 43.8% 100 

Table 1 shows results of the Survey Question 1. The pass percentage of “With 3D 

DGS” (86.4%) was 30.1 points higher than that of “With 3D DGS” (56.3%). The 

Pass/Fail number of different groups regarding this question was significant, χ
2
 (1, 

N=98) = 10.881, p<.01. Similarly, pass percentage of “With 3D DGS” (56.2%) was 

30.2 point higher than that of the national survey 2003 (56.2%), and the Pass/Fail 

number was significant, χ
2
 (1, N=3683) = 24.057, p<.01. Therefore, it can be seen that 

the curriculum with 3D DGS heightens the pass percentage compared to that was 

compliant with the 1998CS. 

If attention is focused on response status to the answers, the percentages of students 

who show a development or explain using a development of cylinder (type 4) was 0% 

for “With 3D DGS”, which is notably low when compared to “With 3D DGS” (28.1%) 

or the national survey 2003 (11.7%). 

In the curriculum with 3D DGS, it was also significant that multiplier effects can be 

recognized in the relationship between cognitive and affective aspects. For example, 

the percentage of students who passed this question and positively answered “Did you 

understand spatial figures constructed by moving line segments or planes?” was 84.8% 

(n=66) in the “With 3D DGS”. On the other hand, in the “1998CS compliant” it was 

53.1% (n=32). Similarly, the percentage of the students passed this question and 

positively answered “Did you like studying spatial figures constructed by moving line 

segments or planes?” was 86.4% (n=66) in the “With 3D DGS”. On the other hand, in 

the “1998CS compliant” it was 40.6% (n=32). In addition, the percentage of students 

who passed and positively answered “Do you think the fact that spatial figures 

constructed by moving line segments or plane figures will be useful in daily life or in 

the business world?” was 69.7% (n=66) in the “With 3D DGS”. On the other hand, in 

the “1998CS compliant” it was 37.5% (n=32). 

It seems reasonable to conclude that these effects were generated by activities 

embedded within the curriculum. In the curriculum, for example, the students moved  

plane figures in parallel using 3D DGS to construct prisms and cylinders, and then 

observed the process and result of those construction from various angles (Fifth lesson: 

on Jan 31). Next, the students referred to the real things along with dynamic 

transformations in 3D DGS and drew a sketch of various prisms and cylinders 

corresponding with the construction of them by moving a plane figure in parallel (Sixth 

lesson: on Feb 1). The students also used 3D DGS to construct a torus or solids of 

revolution which are constructed when a plane figure rotates around a axis which does 

not exist on the plane, and then observed those operations from various perspectives 
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(Seventh lesson: on Feb 2). Moreover, using 3D DGS, the students compared the 

construction of a cone by rotating a right triangle and the side of cone by moving a line 

segment (eighth lesson: on Feb 3). It seems that the students began to understand the 

construction of spatial figures through these activities. In addition, as the activities 

relate to the representation of spatial figures, students explained similarities between 

prisms and cylinders by moving a plane in parallel based on positional relationships of 

the sides or faces (Fifth lesson), described the necessary ingenuity or precautions taken 

when they drew a sketch of prisms and cylinders (Sixth lesson), and explained 

similarities between solids of revolution (Seventh lesson). It seems that these activities 

helped to increase the abilities of students to verbalize constructions of spatial figures. 

 

Figure 1: A student’s description on similarities between prisms and 

cylinders by moving a plane in parallel (Fifth lesson) 
“The planes on the top and bottom are parallel and a uniform shape. The shapes of 

the top and bottom do not change when any figure is moved in parallel. The 

longitudinal sides are vertical to the top and bottom plane.”  

 

Figure 2: A student’s description on the necessary ingenuity or precautions 

taken when they drew a sketch of prisms and cylinders (Sixth lesson) 

“Draw the base plane, draw a vertical side, and draw the 

top plane”  

Representation of a Spatial Figure on the Plane 

Survey Question 3 (2001: No. 1B12, or 2003: No. 1B12) “In 

the cube described in the sketch on the right, we are going to 

compare the length of two line segments indicated with bold 

lines (-). Select the correct answers from (a), (b), or (c) below. 

Also, explain the reasons why in the column □. (a) Line 
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segment BD is the longest; (b) Line segment CF is the longest; (c) The length of line 

segments BD and CF are equal” 

Table 2: The actual length of the line segment in the sketch with different groups 

Group Pass Fail Total 

Classes in a same School    

With 3D DGS (n=66) 83.3% 16.7% 100  

1998CS Compliant  (n=32) 62.5% 37.5% 100 

National survey 2003 (n=6822) 44.2% 55.8% 100 

Table 2 shows results of the Survey Question 3. The pass percentage of the “With 3D 

DGS” (83.3%) was 20 points or more higher than that of “1998CS compliant” (62.5%). 

The Pass/Fail number of different groups regarding this question was significant, χ
2
 (1, 

N=98) = 5.208, p<.05. Similarly, the pass percentage of “With 3D DGS” was about 40 

points higher than the percentage of the national survey 2003 (44.2%), and the 

Pass/Fail number was significant, χ
2
 (1, N=6888) = 40.464, p<.01. Therefore, it can be 

seen that the curriculum with 3D DGS heightens the pass percentage regarding this 

question comparing to that been compliant with 1998CS. 

If attention is focused on the response status to the answer, the percentages of students 

who can understand that the diagonal line lengths are equal (answer type 5, 6, and 7) 

was 84.8% (n=66) in the “With 3D DGS” and 22.2 points higher than the one in the 

national survey 2003 (62.6%, n=6822). The relevant/not-relevant number regarding 

this answer type was significant, χ
2
 (1, N=6888) = 13.862, p<.01. 

If attention is focused on relationship between cognitive and affective aspects, the 

percentage of students who passed and positively answered to the question “Did you 

understand the meaning of cutting a spatial figure with a plane and did you think about 

the shape of the cut surface?” was 81.8% (n=66) in the “With 3D DGS”. On the other 

hand, in the “1998CS compliant” it was 40.6% (n=32). Similarly, the percentage of 

students who passed and positively answered the question “Did you like studying 

cutting a spatial figure with a plane and thinking about the shape of the cut surface?” 

was 77.3% (n=66) in the “With 3D DGS”. On the other hand, in the “1998CS 

compliant” it was 38.8% (n=32). In addition, the percentage of students who passed 

and positively answered the question “Do you think that cutting a spatial figure with a 

plane and thinking about the shape of the cut surface will be useful in daily life or in the 

business world?” was 63.6% (n=66) in the “With 3D DGS”. On the other hand, in the 

“1998CS compliant” it was 24.8% (n=32). 

In the “SPATIAL GEOMETRY” curriculum, 3D DGS induced the elaborateness and 

accuracy of observations and manipulating spatial figures. Therefore, it seems 

reasonable to conclude that students explored spatial figures based on their 

characteristics and relationships were enriched and the quality of findings and 

verifications were improved. For example, the students used 3D DGS to multilaterally 

observe the changes in the shape of cut surfaces (ex. a equilateral triangle, a square, a 

regular hexagon) by continuously moving the plane which cut a cube (9
th
 & 10

th
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lessons: on Feb 8 & 9). In addition, in this process students could observe that it is not 

actually a regular pentagon when they operated and observed it from various angles 

even if the shape of the cutting surface looks like a regular pentagon from an angle. 

Moreover, through activities related to the concept formation of spatial figures in 

described previously the fifth and seventh lessons, students cultivated their ability to 

understand or draw sketches. Therefore, it can be considered that the students could 

recognize that planes of a cube shown in the sketch were congruent. Moreover, as the 

activities relate to logical thinking, the students discovered and explained the 

characteristics of developments of a cube comparing developments which become a 

cube to those which do not become a cube (Second & Third lessons: on Jan 24 & 26). 

And in the discussion of the characteristics of a development which will become a cube 

or the discussion of the reasons that the cut surfaces of a cube do not become a right 

pentagon (11
th
 lesson: on Feb 15), the activities included representing what they 

discussed and thought. 

CONCLUSION AND IMPLICATIONS 

The effects of the spatial geometry curriculum utilizing 3D DGS were found by 

comparing the result of experimental group with that of control group in the same 

school in Japan, as well as results of the national survey of Japan. In the result, as 

cognitive effects of the “SPATIAL GEOMETRY” curriculum, positive effects were 

identified regarding the construction of spatial figures by moving a plane figure, and 

the explanation for a spatial figure represented on a plane. Moreover, multiplier effects 

were recognized in the relationship between cognitive and affective aspects based on 

the students’ reflections on their learning about the construction and cutting of spatial 

figures respectively from three points of view (“understanding”, “interest level”, and 

“usability”). 

The following two points could be considered as factors which led to those effects: 

• In the “SPATIAL GEOMETRY” curriculum, the following qualitatively 

different activities were embedded respectively: Activities with concept 

formation of spatial figures, logical thinking, and representations of spatial 

figures 

• The use of 3D DGS will facilitate the three possibilities in the above 

mentioned activities as follows: The possibility of exploring spatial figures 

those are physically difficult to construct or operate, multilaterally observing 

the process of the construction or operation of 3D figures in the dragging, and 

cultivating logical thinking about spatial geometry with dynamic 

transformations and multilateral observations. 

As future research, the following challenges could be suggested: (a) In the learning of 

spatial geometry, to confirm effects of aspects not covered in this research. (b) To 

concretely specify factors that improved students’ learning to improve the curriculum 

as well as to compensate for the tendency captured by the quantitative analysis with 

qualitative analysis. 
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Note 

1) This website was translated into English (http://www.criced.tsukuba.ac.jp/gc/). 

2) The term “curriculum” is used not in the sense of a national Japanese curriculum in 

but rather in the sense of “a curriculum at the classroom level”. For each lesson plan, 

please refer to “http://www.schoolmath3d.org/”. 

Acknowledgements: This research was funded by Grant-in-Aid for Scientific 

Research, Nos. 17011031, 17530653, 18330187, and 18730538. 
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MATHEMATICS AS MOTHER/BASIS OF SCIENCE IN AFFECT: 

ANALYSIS OF TIMSS 2003 DATA  

Mei-Shiu Chiu
∗
 

National Chengchi University, Taiwan 

 

Mathematics is the mother/basis of science as revealed by the structure of our brain 

and the design of school subjects for most cultures. Does our motivational structure 

reflect this structure and in turn influence students’ achievement? The results from a 

series of LISREL, correlation, and cluster analyses on TIMSS 2003 data showed that 

the pattern of roles of mathematics motivations in mathematics achievement is very 

similar to that in science achievement. However, science motivations play 

comparatively different roles between mathematics and science achievement. The 

results lend support to the claim that we establish the structure of our affective world 

as a reflection of the structure of our knowledge of the world and that mathematics is 

the mother/basis of science in terms of affect. 

INTRODUCTION 

Mathematics is the science of pattern and logic and can be a powerful tool to model a 

wide range of domains of world knowledge (e.g., science) and mathematics becomes 

an essential school subject, as revealed by the national curricula of most cultures. 

Mathematics or quantity is also one indispensable part in most IQ tests, e.g., WISC for 

both children and adults. Research on cognitive neuroscience also identifies a 

biologically determined part in human brain for the domain of quantity (Dehaene et al., 

2003). Mathematics is therefore widely perceived as the mother/basis of science. Will 

our affective or motivational responses show a reflection of this knowledge structure? 

The exploration of cross-domain motivations in relation to cross-domain 

achievements can deepen our understanding of the structure of affect in learning 

mathematics and other subjects, e.g., science. Using student responses to the TIMSS 

2003 study, we can examine this issue from a perspective of cross-cultural 

commonalities and diversity (e.g., Chiu, 2006). These examinations are likely to 

facilitate a sound design of teaching materials and classroom dialogue that takes 

account of the cognitive and affective structures of the learning of different domains of 

knowledge. 
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Educators of different school subjects have long examined motivational/affective 

issues for their respective domains, e.g., McLeod (1994) and Hannula (2002) for 

mathematics and Tuan et al. (2005) for science, because these motivational constructs 

are significant predictors of achievement. The most significant construct is 

self-efficacy, which is the best affective predictor of student achievement especially 

when it is defined for specific tasks or domains of knowledge (Bandura, 1997; Pietsch, 

Walker, & Chapman, 2003). Wigfield and Eccles (2000) propose an expectancy-value 

theory of motivation, which comprises two factors: expectancy (i.e., 

ability/confidence and expectancy beliefs) and value (i.e., attainment importance, 

intrinsic value, utility value, and cost) and these distinct constructs are also evidenced 

domain-specific. Further, self-concept or these ability-related beliefs are viewed as a 

hierarchical or multidimensional construct (Marsh & Hau, 2004), i.e., the construct on 

the general level and the domain-specific level. There is however a limited 

understanding of the relationship between different domains of affect in relation to 

achievement. 

In sum, according to the essence of mathematics and the design of our brain, IQ tests, 

and most national curricula, mathematics is the mother/basis of science and science 

includes more diverse domains of knowledge.  If our motivational/affective system is 

a reflection of this design, we can expect to see that mathematics motivation is not 

only the basis of mathematics achievement but also science achievement, while 

science motivation will plays a less consistent role in mathematics and science 

achievements. There may be some minor inconsistent findings for different cultures as 

some cultures may place little emphasis on the belief that ‘mathematics is the mother 

of science’ and may not design their school system accordingly. 

METHOD 

Participants 

Forty-seven countries participated in the TIMSS 2003 study. However, the data for 

only 87,913 students from 19 countries (Table 1) were analyzed after excluding 

countries without motivation variables and without fit to the analytical procedure of 

LISREL (e.g., listwise deletion and non-definable parameters). 

Indicators 

Four kinds of indicators were taken from the TIMSS 2003 study:  

(1) Mathematics motivations, referring to students’ motivations about learning 

mathematics. The first part is self-confidence in learning mathematics (4 items, labeled 

mc1-mc4 in the present study). The items are: 

I usually do well in math.  (mc1; TIMSS-variable BSBMTWEL). 

Mathematics is more difficult for me than for many of my classmates (reversed, mc2; 

TIMSS-variable BSBMTCLM). 
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Mathematics is not one of my strength (mc3, TIMSS-variable BSBMTSTR). 

I learn things quickly in mathematics (mc4, TIMSS-variable BSBMTQKY). 

The second part is students’ valuing mathematics (7 items, labeled mv1-mv7). The 

items are: 

I think learning mathematics will help me in my daily life (mv1, TIMSS-variable 

BSBMAHDL). 

I need mathematics to learn other school subjects (mv2, TIMSS-variable 

BSBMAOSS). 

I need to do well in mathematics to get into the university of my choice (mv3, 

TIMSS-variable BSBMAUNI). 

I would like a job that involved using mathematics (mv4, TIMSS-variable 

BSBMAJOB). 

I need to do well in mathematics to get the job I want (mv5, TIMSS-variable 

BSBMAGET). 

I would like to take more mathematics in school (mv6, TIMSS-variable 

BSBMTMOR). 

I enjoy learning math (mv7, TIMSS-variable BSBMTENJ). 

All the items use a 4-point rating scale ranging from 1 (agree a lot) to 4 (disagree a 

lot). 

(2) Science motivations, including confidence (4 items, labeled sc1-sc4) and value (7 

items, labeled sv1-sv7), with the same item content and scaling method as for those 

mathematics motivations, except for ‘science’ as the school subject. 

(3) Mathematics achievement, including achievements in algebra, data, 

fractions/numbers, geometry, and measurement. 

(4) Science achievement, including achievement in earth science, life science, physics, 

chemistry and environment/resources. 

RESULTS 

Measurement model 

LISREL analysis reveals that a 3-factor model of mathematics motivation and science 

motivation is more acceptable than a 2-factor model for all 19 respective countries 

after a deletion and re-combination of the 11 items. The three factors are confidence (3 

items), utility (2 items), and interest (2 items) for mathematics and science 

respectively (Fig. 1). The 3-factor model also reveals a better fit (RMSEA = .084) than 

the 2-factor model (RMSEA = .093) in the multi-group invariant tests using LISREL. 

The measurement model for the mathematics and science achievement reveals a slight 

fit (RMSEA = .109; CFI = .97) in the multi-group invariant tests. 
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Path model 

A structural equation model of the role of mathematics/science motivation in 

mathematics/science achievement (Fig. 1) was proposed in order to examine the data 

from the 19 countries, respectively. This model is fit to all the 19 countries as revealed 

by the values of RMSEA (Table 1). 

 

Figure 1: A structural equation model of mathematics/science motivation and 

achievement 

Patterns of the roles 

The degrees of significance of the path parameters (G1-G12) for the 19 countries were 

indicated by 3 as positive significance, 2 as non-significance, and 1 as negative 

significance. Bivariate correlations between the pairs of significance of G1 vs. G7, G2 

vs. G8, G3 vs. G9, G4 vs. G10, G5 vs. G11, and G6 vs. G12 were .85, .83, .78, .38, .71, 

and .61, all significant at .01 level except for that of G4 vs. G10 (r = .38). These 

correlations reveal that mathematics motivations play similar roles in both 

mathematics and science achievement, while the roles of science motivations in 

mathematics and science achievement are quite different, especially for confidence in 

science. 

Cluster analysis was utilized to identify the non-linear relationship between the 

degrees of significance of the path parameters of G1-G12. This analysis categorized 

the 19 countries into 3 clusters. One-sample T tests were performed to determine 

whether the degrees of significance of G1-G12 were significant from 

‘non-significance’ (i.e., ‘2’). Table 2 shows that motivations in mathematics play the 

same pattern of roles in both mathematics and science achievement for the three 

clusters, while motivations in science are less stable in relation to both mathematics  
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Country G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 
RMS-
EA 

C
M DCC 

New 
Zealand -1.02

*
 -.10 .70

*
 .42

*
 .07 -.56

*
 -.71

*
 -.17 .76

*
 .06 .05 -.45 .068 1 .85 

Chile -.95
*
 -.03 .71

*
 .24

*
 .00 -.19 -.73

*
 .01 .61

*
 .01 .01 -.11 .059 1 1.10 

Australia     -.79
*
 -.07 .42

*
 .33

*
 -.02 -.42

*
 -.49

*
 .04 .29

*
 -.05 -.19

*
 -.11 .065 1 1.49 

Norway     -.93
*
 .10

*
 .25

*
 .27

*
 -.04 -.23

*
 -.65

*
 .00 .34

*
 -.03 -.05 -.21

*
 .061 1 1.57 

Morocco     -.73
*
 -.11 .53

*
 .27 .44

*
 -.63

*
 -.16 .15 .03 -.27 .17

*
 -.07 .060 1 1.65 

Botswan
a -.66

*
 .11 .45 .61 .21 -1.18

*
 .03 .01 -.02 .04 .00 -.46

*
 .064 1 1.72 

Japan -.80
*
 -.18

*
 .40

*
 .25

*
 .08 -.36

*
 -.18

*
 -.38

*
 .18

*
 -.37

*
 .23

*
 -.05 .071 1 1.79 

South 
Africa -.46 -1.50

*
 1.55

*
 .22 1.12

*
 -.91 -.31 -1.61

*
 1.61

*
 .24 1.25

*
 -1.16 .057 1 2.17 

England     -.49
*
 -.04 .24

*
 -.09 -.07 .04 -.31

*
 -.06 .33

*
 -.31

*
 -.10 .04 .063 2 1.27 

Italy -.79
*
 -.06 .38

*
 .05 -.04 -.06 -.51

*
 .08 .24 -.2 -.18

*
 .13 .061 2 1.42 

Korea -.82
*
 .21 .07 .14

*
 -.3

*
 -.04 -.33

*
 -.17 .17 -.34

*
 -.01 .00 .059 2 1.56 

Jordan     .26 -1.12 .52 -.96
*
 .63 .41 .20 -.98 .61 -.92

*
 .68 .16 .060 2 1.62 

Syrian -.52 .12 .11 -.51
*
 -.06 .55 .08 -.18 -.04 -.68

*
 .00 .56 .051 2 1.62 

Palestini
an -.27

*
 .00 -.04 -.57

*
 -.15 .55

*
 -.2

*
5 -.05 .18 -.61

*
 -.18 .45

*
 .057 2 1.68 

United 
States -.58

*
 -.02 .24

*
 -.18

*
 -.15

*
 .15 -.49

*
 -.08 .44

*
 -.2

*
 -.14

*
 .00 .064 2 1.68 

Iran -.69
*
 .20

*
 .18 -.22 .07 .13 -.42

*
 .02 .30

*
 -.33

*
 .15

*
 .03 .057 2 1.79 

Bahrain     -.55
*
 .36

*
 -.20 -.47 -.63

*
 1.03

*
 -.64

*
 .51

*
 -.01 -.24 -.45

*
 .48 .064 2 1.85 

Chinese 
Taipei      -1.77

*
 1.51

*
 .04 1.24

*
 -1.24

*
 -.41 -1.21

*
 1.32

*
 -.17 .66 -1.08

*
 -.14 .074 2 2.05 

Philippin
es .39

*
 -.08 -.54

*
 .02 -.26

*
 .21 .33

*
 .09 -.38

*
 .23

*
 -.41

*
 -.13 .060 3 .00 

G1: math confidence�math ach; G2: math utility�math ach; G3: math interest�math ach; G4: 

science confidence�math ach; G5: science utility�math ach; G6: science interest�math ach; G7: 

math confidence�science ach; G8: math utility� science ach; G9: math interest� science ach; G10: 

science confidence� science ach; G11: science utility� science ach; G12: science interest� science 

ach; RMSEA = Root Mean Square Error of Approximation (< .08, as reasonable fit in LISREL); 

CM=cluster membership; DCC=distance from cluster center. 

* Significant at .05 level 

Table 1: Achievements by test results using LISREL, cluster, and K-means analysis 

and science achievement. For Cluster 1 and Cluster 2, confidence in mathematics play 

a positive role and utility of mathematics failed to play a significant role in either 

mathematics or science achievement. Interest in mathematics has a negative 

relationship with both mathematics and science achievement for Cluster 1, but for 

Cluster 2 no significant relationship. For Cluster 1, science confidence has a negative 

relationship with mathematics achievement, but no relationship with science 

achievement. For Cluster 2, science confidence has a positive relationship with 

science achievement, but no significant relationship with mathematics achievement. 

For Cluster 1, science utility failed to predict both mathematics and science 

achievement, but for Cluster 2 science utility has a positive relationship with 

mathematics achievement but no relationship with science achievement. For Cluster 1, 

science interest has a positive relationship with mathematics achievement, but no 

significant relationship with science achievement. For Cluster 2, science interest has 
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no significant relationship with either mathematics or science achievement. In 

summary, for Cluster 1, science confidence is negatively and science interest is 

positively related to mathematics achievement, but not to science achievement. For 

Cluster 2, science confidence is positively related to science achievement, and science 

utility is related to mathematics achievement. For Clusters 1 and 2, mathematics 

motivations make more significant predictions (6 cases) than science motivations (4 

cases). 

K-means analysis obtained the distances from the respective cluster center for each of 

the countries (the last two columns in Table 1) and reveals that New Zealand is the 

most typical amongst the countries in Cluster 1, England is the most typical of those in 

Cluster 2, and the Philippines is the only case in Cluster 3. The significance pattern of 

G1-G12 for New Zealand is completely the same as that of Cluster 1, as revealed in 

Table 2, while the pattern of G1-G12 for England is slightly different from that of 

Cluster 2. The results for the Philippines also show that mathematics motivations play 

the same roles in both mathematics and science achievement. However, while the 

results for Clusters 1-2 show that mathematics confidence plays a positive role and 

mathematics interest negative or neutral, the Philippines is a mirror image, with 

mathematics confidence play a negative role and mathematics interest positive. There 

is the same pattern of relationship between science motivations and mathematics 

achievement for both Cluster 2 countries and the Philippines, with a positive 

relationship between science utility and mathematics achievement and no significant 

relationship between science confidence/interest and mathematics achievement. In the 

Philippines, science utility is also positively related to science achievement, but 

science confidence negatively. 

 

  G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 

Cluster 
1 Mean 1.13 1.88 2.88 2.63 2.25 1.25 1.38 1.75 2.75 1.88 2.25 1.75 

 SD .35 .64 .35 .52 .46 .46 .52 .46 .46 .35 .71 .46 

 T -7.00
*
 -.55 7.00

*
 3.42

*
 1.53 -4.58

*
 -3.42

*
 -1.53 4.58

*
 -1.00 1.00 -1.53 

Cluster 
2 Mean 1.20 2.30 2.30 1.80 1.60 2.20 1.20 2.20 2.30 1.30 1.70 2.10 

SD .42 .48 .48 .79 .52 .42 .42 .42 .48 .48 .67 .32 

T -6.00
*
 1.96 1.96 -.80 -2.45

*
 1.50 -6.00

*
 1.50 1.96 -4.58

*
 -1.41 1.00 

Cluster3: 
Philippines .39

*
 -.08 -.54

*
 .02 -.26

*
 .21 .33

*
 .09 -.38

*
 .23

*
 -.41

*
 -.13 

* Significant at .05 level 

Numbers in gray indicate the same patterns of significance in the role of mathematics (or science) 

motivations in both mathematics and science achievement, i.e., comparing G1 vs. G7, G2 vs. G8, G3 

vs. G9, G4 vs. G10, G5 vs. G11, and G6 vs. G12 

Table 2: One-sample T test results for the degrees of significance in path parameters of 

Clusters 1 and 2, cf. Cluster 3 
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DISCUSSION 

As human beings, we all have some shared meanings, commonalities, and 

understanding of ‘truth’, while diversity makes different people and cultures unique. 

The present study identifies three commonalities that are shared by people of different 

cultures. First, using a series of LISREL analysis, a three-factor model of 

mathematics/science motivations was confirmed. The three factors are confidence, 

utility, and interest, which is a combination of theories of expectancy-value (Wigfield 

& Eccles, 2000) and intrinsic-extrinsic motivations (Ryan & Deci, 2000). Second, the 

role of the three-factor model of mathematics/science motivations in 

mathematics/science achievement was confirmed by LISREL analyses for the 19 

countries given the TIMSS 2003 database. Third, correlation tests for the degrees of 

significance of roles of mathematics/science motivations in mathematics/science 

achievement reveal that the pattern of roles of mathematics motivations in 

mathematics achievement is very similar to that in science achievement. However, 

science motivations, especially science confidence, play comparatively different roles 

between mathematics and science achievement. Based on the above three 

commonalities, a claim that may be posited is that mathematics is the mother/basis of 

science in terms of motivations/affects. We can use mathematics motivations to 

predict not only mathematics achievement but also science achievement, but we 

cannot use science motivations in the same way. 

There is diversity between cultures in their patterns of roles of mathematics/science 

motivations in mathematics/science achievements, which may address the issue of the 

influence of experience derived from specific cultures. Each culture is unique in its 

patterns and each of the patterns should be explained based on the uniqueness of each 

culture. Cluster analysis is only a method to find cultures of similar patterns of roles 

for mathematics/science motivations in mathematics/science achievements. Except for 

the Philippines, the results for most countries reveal that mathematics confidence 

plays a positive role in both mathematics and science achievements and that 

mathematics utility is not significantly related to either mathematics or science 

achievements. Based on this finding, a more precise, supplementary claim that may be 

posited is that mathematics confidence is the mother/basis of both mathematics and 

science achievements. This claim broadens our understanding of domain-specific 

self-efficacy (Bandura, 1997): We establish the structure of our confidence world as a 

reflection of the structure of our world knowledge. Mathematics is the mother/basis of 

science not only in the cognitive aspect but also in the affective aspect. For educational 

practice, we need to introduce to students a positive affect set not only for the domain 

(e.g., science) but also for its basic, essential domain-related subjects (e.g., 

mathematics). 
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MEDIATING MODEL BETWEEN LOGO AND DGS 

FOR PLANAR CURVES 

Han Hyuk Cho*,  Min Ho Song* and Hwa Kyung Kim** 

*Seoul National University / **Korea Institute of Curriculum & Evaluation 

 

Recent educational studies in planar curves tend to approach with tools, such as Logo 

and DGS, which emphasize action perspective and relation perspective, respectively. 

In this article, we consider the concept of vector as a powerful idea for integrating both 

action and relation perspectives. Also we discuss a mediating model connecting action 

and relation perspectives by designing an integrated microworld environment, and its 

implication in mathematics education. 

 

INTRODUCTION 

Recent development in science and technology has made the validity of information 

shorter. Knowing how to create information came to take priority over owning a set of 

knowledge. Accordingly, knowledge creator, not a knowledge consumer is needed 

now. This means that learners are asked to take an active role of exploring the meaning 

of self through experiences. Recent learning environment emphasizes on activities 

such as conjecture, experiment, and observation through which learners can construct 

one's own language on a mathematical object, rather than focusing them on a set of 

given definitions. 

Development in science and technology has also made it possible to create teaching 

and learning environment never witnessed before. Especially, new technology can 

provide us with dynamic and manipulative experimental environment with regard to 

rate of change such as graph and movement. In the same vein, recent studies on 

teaching and learning planar curves tend to explore its qualitative characteristics while 

traditional research had focused on the concept of correspondence in relation to 

functional thought. The qualitative calculus (Stroup, 2002) approaches the 

understanding of function not as correspondence, which is the key to defining what 

function is in modern mathematics, but as covariation, which is more intuitive. The 

Computer-based Ranger (Berry et al., 2003), Motion Detector (Nemirovsky et al., 

1998) and MathWorlds (Kaput, 1998) are the tools for the qualitative approach to 

function and its graph. 

This line of research has been done frequently in the environment like Logo, putting 

importance on procedural, active command, as well as in DGS (Dynamic Geometry 

Software) with emphasis on manipulative, relative command. Eisenberg (1995) argues 

that it is necessary to integrate these two environments. Abelson & diSessa (1980) also 

discusses the advantages of translation between two environments. We further argue 
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that a mediating model be established to enhance translation between two 

environments in one integrated environment.   

This article aims to review planar curves from the perspectives of relation and action 

and looks into characteristics of environments based on each perspective. It also 

proposes an environment integrating two models while exemplifying one model case 

interconnecting them. Finally, it discusses mathematical implications of realizing the 

integrated model in a microworld.  

 

THEORETIC BACKGROUND AND MICROWORLDS 

Constructionism is both a theory of learning and a strategy for education. It builds on the 

“constructivist” theories of Jean Piaget, asserting that knowledge is not simply transmitted 

from teacher to student, but actively constructed by the mind of the learner. Children don't 

get ideas; they make ideas. Moreover, constructionism suggests that learners are 

particularly likely to make new ideas when they are actively engaged in making some type 

of external artefact -be it a robot, a poem, a sand castle, or a computer program- which they 

can reflect upon and share with others. Thus, constructionism involves two intertwined 

types of construction: the construction of knowledge in the context of building 

personally-meaningful artifacts (Kafai & Resnick, 1996, p. 1). 

Computers and mathematics education (Cho, 2004), a field of study connecting 

mathematics education with computer, is theoretically based on constructionism which 

places stress on mental construction of concepts and knowledge through physical 

construction. Naturally, education based on constructionism needs a space for physical 

construction for its effective implementation. A microworld realizes this space in a 

computer. It emphasizes on learning rather than teaching, structure of the environment 

for knowledge construction rather than functional features of software for improving 

the effectiveness of knowledge delivery. This structure is closely related to ‘powerful 

ideas’, suggested by Bers (2001). He states that a microworld is a constructivist 

environment designed to generate powerful ideas in a space like a black-box. 

Papert (1980) discusses the need of powerful ideas as a mediating thought while giving 

‘feedback’ or ‘ideas on mediating cases’ as examples of powerful ideas. In designing a 

computer-based environment for constructivist learning, it is necessary to consider 

what tools and ideas should be given to learners in order to enhance their meaningful 

construction of knowledge. This article aims to suggest different presentations and 

further ‘composition and decomposition of vector’. Abelson & diSessa (1999) talks 

about advantages of employing different perspectives on a phenomenon. Freudenthal 

(1993), while describing the characteristics of vector, emphasizes its mathematical 

meaning.  

Research has been conducted on various ways to encourage learners to engage in the 

constructivist learning with their sense of planar curves rather than focusing on 

correspondence, sets, calculation of them. What we particularly take note of is the 

research on planar curves in the Logo and DGS environment. Also, there have been 
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studies on how to approach planar curves using a turtle’s movement. Armon (1999) 

and Kynigos (2000) explore the curves using intrinsic equation
1
. Specifically, Armon 

(1999) attempts to find intrinsic procedure through intrinsic equation and applies it to 

turtle-algorithm. The essence of these studies lies in the transformation of intrinsic 

equation, to which turtle-algorithm is applicable, to turtle-action. Eisenberg (2000) aim 

to give practical meaning to curves like cycloid and cardioid by offering a command 

representing two actions of a turtle in one consequence.  

Cha & Noss (2002) explains the importance of DGS design with reference to locus 

problems in functions and graphs. Maor (2003) states that many tools have been 

developed to draw different types of curves and that it is a great pleasure to see those 

tools move, slowly drawing designated curves. Spirographs, which gained popularity 

in 1970s, had been used as a tool to draw beautiful figures with periodicity and studied 

in mathematics, especially in relation to astronomy (Ippolito, 1999; Adams et al., 

2006). This shows the importance of manipulative environment in dealing with curves.  

 

Figure 1: Logo and DGS 

Logo and DGS are not totally distinct from each other. Rather, these two different 

environments can be integrated into one; Cho (2006), Cho et al. (2004)
2
. Figure 1 

represents how a set of actions and relations, central concepts in DGS and Logo, can 

work in an integrative way. 

MEDIATING MODEL: ELLIPSE 

JavaMAL is a microworld integrating Logo and DGS. A turtle's actions in Logo 

influence basic objects in DGS like point and line and vice versa. Integration of Logo 

and DGS is necessary in that it emphasizes on both construction and manipulation and 

their interaction. Sherin (2002) attempts to realize DGS from the perspective of turtle 

microworld language. Abelson & diSessa (1980) also discuss the translation between 

two different representations like the following:  

Turtle geometry and vector geometry are two different representations for geometric 

phenomena, and whenever we have two different representations of the same thing we can 

                                                      
1
 Intrinsic equation, also called natural equation, refers to a formula represented by three variables of arc length, 

radius of curvature, and tangential angle.  
2
 This refers to an environment in which learners can observe how the turtle moves by manipulating its speed 

bar, and can explore the possibility of gifted education by using turtle action to create, manipulate, and move 

diverse tiles. 



Cho, Song & Kim 

2-156                                                                                                        PME31―2007 

learn a great deal by comparing representations and translating descriptions from one 

representation into the other. Shifting descriptions back and forth between representations 

can often lead to insights that are not inherent in either of the representations alone 

(Abelson & diSessa, 1980, p. 105). 

We understood the concept of curve as (1) static one based on correspondence/set or 

(2) dynamic one based on parametric variables. However, it is difficult to relate, 

translate between, and capture the meaning of two representations. To facilitate the 

actions, we need a bridge between two representations. In this article, we call the 

bridge a mediating model. 

   
 

Ellipse mediating model with turtle move Cos(i) , Sin(i)/2 

Figure 2.a Figure 2.b Figure 2.c Figure 2.d 

Figure 2: ellipse with DGS and Logo
3
 

Figure 2.a and Figure 2.d are DGS ellipses created by ellipse create command and 

turtle action “move
4
”. Figure 2.b, drawn by trace of P when A is manipulated, is the 

mediating model, which contains both of the characteristics of DGS and Logo ellipse.  

In this article, we define a mediating model as follows.  

There are two concentric circles 21,OO  , each of which radius is the arbitrary positive 

real numbers 21,rr  .  Here, points A, B exist on circle 21,OO  , respectively and for 

arbitrary integer number n  , BOXnAOX ∠⋅=∠  and OBOAOP += . 

As in Figure 2.b, the point B moves on the smaller circle in the opposite direction of the 

point A moving on the bigger circle if 401 =r , 202 =r , 1−=n . While A turns one time, 

so does B. Here the trace of B makes an ellipse.  

This model is executed in the DGS environment. Where does a turtle hide? We can 

give a command which makes a turtle create the same circle in the above picture, like 

Figure 2.c. To make this possible, we have to calculate the distance the turtle covered 

and do the mathematical activity like seeking the relation formula between the distance 

and the perimeter of circles.  

The movement of a turtle and the trace of P, which are represented by the relationship 

between two circle-making points, are based on the same principle. It is the 

composition of vectors, one of powerful ideas.  

                                                      
3
 http://www.javamath.com/class.cgi?343 
4
 For more discussion on the move command, see Cho et al. (2004). 



Cho, Song & Kim 

PME31―2007                                                                                                        2-157 

 

↔ 

 

↔ 

 

 

↔ 

 

↔ 

 

Figure 3.a  Figure 3.b  Figure 3.c 

Figure 3: vector approach for ellipse 

Figure 3.a represents the point A turning clockwise around the circular center O and 

the point B turning anti-clockwise as A’s satellite. At a given moment, A's and B's 

revolving movement influence the satellite B, moving point B in the direction of two 

movements’ sum. Using a powerful idea of sum of vectors, Figure 3.a can be translated 

into equivalent relations like Figure 3.b and Figure 3.c. Figure 3.c is an ellipse 

mediating model in this case. This line of thoughts can be represented briefly using the 

sum of vectors as follows.  

OBABOA +=  … ① 

OBOBABABOAOA ∆+=∆++∆+  … ② 

OBABOA ∆=∆+∆  … ③ 

Formula ① represent point B’s change of location based on the manipulation of point 

A in DGS while formula ③ describes the instant action of B. Notably, formula ② uses 

expressions in DGS and Logo simultaneously. Specifically, it has its own meaning 

while providing meanings to both DGS and Logo. This is why we argue that this kind 

of mediating model can bridge DGS and Logo. 

We can get various planar curves by adjusting the values of nrr ,, 21 . Figure 4 shows 

planar curves obtained by representing different values of nrr ,, 21  into corresponding 

( nrr ,, 21 ).  

    

(40 , 20 , -2 ) (30 , 30 , 3) (30 , 30 , -3) (50 , 10 , -5) 

Figure 4: planar curves with the model
5
 

                                                      
5
 Planar curves by mediating model. http://www.javamath.com/class.cgi?344 
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PLANAR CURVES 

We have looked at the model, which constructs an ellipse with movements of two 

circles, and its relationship with DGS and Logo environments. Now we are to apply 

our mediating model to more diverse types of planar curve.  

The study of epicycloids goes back to the Greeks, who used them to explain a puzzling 

celestial phenomenon: the occasional retrograde motion of the planets as viewed from the 

earth (Maor, 1998, p. 102). 

Epicycloid refers to the trace curve based on the relation between two circles. 

Originally developed in the endeavour to explain the celestial movement in astronomy. 

One of the main issues in epicycloid is the type of curve determined by the ratio of two 

circles’ radii. Figure 5 represents a cardioid, the typical example of epicycloid, in DGS, 

our mediating model, and Logo, in turn. 

 

 

 

Figure 5: Cardioid with different representations
6
 

Extension and generalization are important for students’ creative and divergent 

thinking. There are different ways to secure extension and generalization. For example, 

we can use more than two circles, multiple points on each circle or increase the number 

of points, which determine an angular velocity. In the following we review the strategy 

to use multiple circles.  

Points A, B, C, D are on four concentric circles with radius of 

65, 20, 25, 45, respectively. Here, 

DOXCOXBOXAOX ∠=∠−=∠−=∠ 232  and 

ODOCOBOAOP +++= .Given these conditions, the trace of P 

makes a fish curve like figure 6.  

Figure 6: tropical fish
7
 

                                                      
6
 http://www.javamath.com/class.cgi?340 
7
 Tropical fish-shaped curve using four circles . http://www.javamath.com/class.cgi?341 
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CLOSING REMARKS 

In this article, one planar curve is drawn in a dynamic microworld and turtle 

microworld. It is also drawn using a ‘powerful idea’, which views the curve as sum of 

two vectors. Turtle Microworld offers the environment in which various curves are 

created, explored, and manipulated with turtle commands and composition / 

decomposition of vectors from the perspective of ‘what if’. 

We can find the educational meaning of this environment in that it offers the venue in 

which various actions are created. Further, those created actions can give birth to 

manipulable objects like Tile. These features can foster learners’ creative thinking and 

explorative activities. Further, the integrated environment can help introduce the 

dynamic concept of planar curve and vector to mathematics education earlier and more 

naturally than now. 

Specifically, the environment suggested in this article is distinct from traditional 

software, which focuses on delivery of information for the quantitative and numeric 

understanding of planar curve, in that it gives the possibility for learners to understand 

natural phenomena, functional graphs, and various curves in an idea and construct, and 

manipulate them in a microworld. It also emphasizes intrinsic and local procedure in 

approaching geometric phenomena, which may help learners grasping a central 

concept from different perspectives, explore the different aspects of variate in calculus, 

and understand trigonometric function more easily by using it as a tool.  

Finally, this article reviews what is required to connect different mathematical ideas in 

the integrated environment and what examples can be utilized. It also deals with the 

issues in applying the integrated environment to education. This has significant 

implication in the current curriculum which places stresses on integrative thinking 

ability. Further research is needed on the meaning of this environment in mathematics 

curriculum so that it can help reorganize and enhance the subject matter. 
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Elementary students who were currently third graders in Korea and the U.S.A. were 

asked to complete the Researcher-made Multiplication Questionnaire (RMQ) that 

contained four open-ended questions in order to examine their conceptual 

understanding of multiplication.  The U.S. third graders provided better and more 

divergent definitions of multiplication than Korean students. However, Korean 

students created a multiplication word problem and represented it with a number 

sentence better than U.S. students did.  Also, Korean students better identified the 

situations when multiplication was used in their real lives.  But, Korean students 

lacked understanding of the different meanings of multiplication for all questions 

compared to the U.S. students’ understanding.   

INTRODUCTION 

An agenda for the reform of school mathematics in the field of education has been the 

topic of considerable research, resulting in a new teaching approach based on the 

current learning theory “Constructivism.”  The teaching and learning of mathematics 

has moved worldwide from memorizing sets of established facts, skills, and algorithms 

to focusing on children’s active construction of meaning and mathematics as 

sense-making and meaningful learning. 

In the U.S.A., this movement has been articulated with consistency by publications of 

the National Council of Teachers of Mathematics (NCTM) such as the Curriculum and 

Evaluation Standards for School Mathematics (1989) and the Principles and 

Standards for School Mathematics (2000).  These publications call for reform in school 

mathematics by placing emphasis on the importance for all students in grades K-12 to 

study a common core of broadly useful mathematics through their active participation 

in the learning process in order to become intellectually autonomous learners.  

Korean schools use a national curriculum.  This mathematics curriculum has been 

developed and revised by a committee of educational leaders among classroom 

teachers in different grade levels, mathematics educators, and researchers from 

academic institutes under the authorization of the Ministry of Education and Human 

Resources Development (MEHRD). The current Korean mathematics curriculum, 

which is the 7
th
 national curriculum, distinguished as “learner-centered,” was revised in 

1998 (Lew, 2004) and has been implemented since 2000 (Paik, 2004, p. 12).  This 

curriculum development reflected the current mathematics reform movement within 
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the international context and was easily noticed in the history of Korean mathematics 

education (Paik, 2004).    

International comparative studies in student academic achievement, such as the Trends 

in International Mathematics and Science Study (TIMSS, 1999 & 2003) and the 

Program for International Student Assessment (PISA, 2003), reported that Asian 

students achieved high scores in the subject of mathematics and outperformed their 

western counterparts. Particularly in 2003, Korean 8
th
 graders ranked 2

nd 
(M=589) 

while the U.S. students ranked 15
th 

(M=504) in mathematics among 46 countries 

participating in TIMSS. After these findings, there is a growing research interest in 

Asian mathematics education within the U.S.A. Various research studies have been 

carried out to contrast the curriculum and instructional methods to examine differences 

between Asian countries and western countries (e.g., Chung, 2005; Hiebert & Stigler, 

2000; Li, 2000; Watanabe, 2001; Yong, 2005).  However, few research studies 

contributed to comparing students’ conceptual understanding of mathematics, which is 

one of the most important current issues in the teaching and learning of mathematics.   

Multiplication has been much more difficult for children to perform than addition and 

subtraction in general (Oliver, 2005).  Earlier studies have shown that young children 

can develop multiplication concepts in kindergarten or first grade (Carpenter, et al, 

1993; Clark & Kamii, 1996).  However, teaching multiplication facts is a basic part of 

the primary grade (K-3) mathematics curriculum. Students are introduced to 

multiplication concepts in second grade and are required to memorize their facts in 

third grade (Chung, 2005; Wallance & Gurganus, 2005).  Some researchers (e.g., Behr 

et al., 1994; Bell et al., 1989; Confrey & Smith, 1995) claimed that once children reach 

the primary grades they are unable to solve problems involving multiplication or apply 

multiplicative number facts with meaning.  When students reach grades 4-5, they 

experience difficulty in using multiplicative reasoning in a range of contexts and 

integrating their understanding of rational numbers with multiplication and division.  

This suggested that difficulties faced by older students can be attributed, at least in part, 

to the lack of development of conceptual understanding of multiplication in early 

primary grades (Mulligan & Watson, 1998).  With the results of the international 

comparative studies and concerns about teaching and learning mathematical concepts, 

especially multiplication concepts in primary grades, researchers investigated how 

students from Korea and the U.S.A. differ in their conceptual understanding of basic 

multiplication facts.    

Purpose 

This study was established to compare the conceptual understanding of basic 

multiplication facts between Korean and U.S. 3
rd
 grade elementary students.  The 

specific objectives of this study were to investigate the following: 1) Define 

multiplication; 2) Represent their understanding of multiplication at the symbolic level 

(such as numbers and words, and number sentences); 3) Communicate their 
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understanding of basic multiplication facts with others; and 4) Relate their conceptual 

understanding of multiplication to their real life situations.  

METHODOLOGY 

Participants 

Participants for this study included 129 male and 111 female, (total 240) third grade 

students of Korean (n=120) and American (n=120) heritage who were currently 

enrolled at two public schools in the suburban areas of the states of Indiana and Illinois 

in the U.S.A. and three schools in the suburban areas of Seoul and Pusan in Korea.  The 

mean ages of the participants were 111.25 months (SD 3.48) for Korean schools and 

106.35 months (SD 4.16) for the U.S. schools.  Korean students were taught with the 

national elementary school mathematics curriculum which was developed by a 

mathematics curriculum committee under the authorization of the Ministry of 

Education and Human Resources Development (MEHRD, 2001). The U.S. students 

who participated in this study were taught with the mathematics curriculum, “Everyday 

Mathematics” published by the University of Chicago School Mathematics Project 

(2001).   

Instrument 

The Researcher-made Multiplication Questionnaire (RMQ), entitled “How Much Do I 

Know about Multiplication?” was used to examine the 3
rd
 graders’ conceptual 

understanding of basic multiplication facts.  It consisted of 4 open-ended questions. 

Students were asked to define multiplication, create a multiplication word problem and 

construct a number sentence for the problem, explain their understanding of a basic 

fact (e.g. 7 x 6) using their own words, and describe how they utilize multiplication 

skills in their real life situations.  

The questionnaire was developed in English and reviewed by two professors.  The first 

is a university professor with expertise in educational measurement and statistics and 

the second is a mathematics education professor.  The questionnaire was translated into 

Korean by the researcher.  This instrument was also used in a previous research study 

done by Kim, Anderson, and Chung in 2002.  For the current study, the RMQ was 

reviewed and revised by two classroom teachers from each country prior to distribution 

to the participants.    

Procedure and Data Analysis 

The researcher in each country distributed a letter containing the information 

explaining the objectives of the study, a copy of the parent consent form, student 

consent form, and the questionnaire to the principals of three participating schools at 

the beginning of the fall 2006 semester.  One school in the U.S.A. dropped out from the 

study. As a result, only five public schools participated in this study. Two schools were 

located in Seoul and one in the Pusan area in Korea. One school was located in Chicago, 

Illinois and one school was located in Granger, Indiana in the U.S.A.   
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The student questionnaires were collected by the researchers in early September from 

Korean schools and during the period of mid-November to early December from the 

U.S. schools.    

Student responses on the questionnaires were categorized following the guidelines of 

the data coding system developed by the researchers and input on the computer using 

SPSS 14.0 software.  The four multiplicative structures (additive/equal group, 

array/area, multiplicative comparisons, and combinations) identified by Greer (1992) 

were adopted to analyse student responses regarding multiplication stories.  The 

coding system and input data were cross-examined by both researchers and reviewed 

by a Korean American sociology professor who is an expert in research measurement 

and statistics.  Coded data were analysed using descriptive statistics.  Frequencies, 

percentages, and cross-tabulation were used to analyse student responses to individual 

items on the RMQ. Cross-tabulation and the Chi-square statistics were employed to 

determine differences in the third grade students’ conceptual understanding of 

multiplication between the two groups.  

RESULTS 

When students were requested to provide a definition of multiplication using their own 

words, approximately three quarters of the U.S. students (n=88, 73.3%) provided a 

correct definition whereas only about one half of the Korean students (n=56, 46.7%) 

could do so.  The Pearson Chi-Square statistics indicated that more U.S. students had 

significantly clearer definitions of multiplication than Korean students at p < .001 (see 

Table 1).   

There are four distinctive models in multiplication.  These are additive/equal groups, 

area/arrays, multiplicative comparisons, and combinations/Cartesian. The additive 

model tells how many groups or sets of equal size are being considered.  The area/array 

model is a rectangular region defined as the units along its length and width and an 

arrangement of objects or pictures in rows by column.  The multiplicative comparisons 

mean that there are two different sets that needed to be matched one-to-one to decide 

how much larger one is than the other.  The combination/Cartesian model states that 

there are two factors representing the sizes of two different sets and the product 

indicates how many different pairs of things can be formed (Reys et al., 2004).   

Students from both groups provided definitions in five different ways: 1) 

Additive/equal groups; 2) area/array; 3) multiplicative comparisons; 4) additive and 

array; and 5) additive and multiplicative comparisons. For the latter two ways, students 

explained the problem using two different models. Approximately forty-two percent 

(n=101) of two hundred forty students (48 Korean students, 53 U.S. students) defined 

multiplication as additive/equal groups (see Table 2). For the task to create a 

multiplication word problem, about seventy-one percent of Korean students (n=85) 

and about fifty-six percent of U.S. students (n=67) provided correct word problems and 

represented the problems in a number sentence. Pearson Chi-Square showed 

significant statistical difference between the two groups at p < 0.001 for the word 
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problem and at p < .01 for representing the problem by a number sentence (see Table 1).  

Approximately fifty-five percent of students (76 Korean students, 55 U.S. students) 

created additive/equal group models of multiplication problems (see Table 2).  

Students were requested to explain to their younger siblings what 7 x 6 means in their 

own words.  For this question, approximately seventy-three percent of Korean students 

(n=88) and seventy-six percent of U.S. students (n=91) explained the meaning of 7x6 

correctly.  There was no statistical significant difference between the two groups at p 

> .05 for explaining the meaning of the problem (see Table 1).  Approximately 

twenty-eight percent of U.S. students (n=33) explained the problem with words and 

about twenty-six percent of students (n=31) used numbers and words in their 

explanation. Close to seventy-five percent of Korean students (n=85) described the 

problem in words and numbers/number sentences.  The most frequently used approach 

for Korean students (n=81, 67.5%) was to describe the meaning of the problem with 

the additive/equal group multiplication model.  For the U.S. students, about forty-one 

percent of the students (n=49) approached the problem using additive/equal groups and 

twenty-three percent of the students (n=28) explained the problem using the array/area 

model of multiplication (see Table 2). 

Regarding the question of when students use multiplication skills in their real lives, 

nearly one half of the Korean students (n=56, 46.7%) and slightly more than one forth 

of the U.S. students (n=33, 27.5%) clearly identified a situation. Pearson Chi-Square 

statistics revealed that there was significant difference between the two groups at p < 

0.01 for identifying situations, but no differences in terms of relating how to use the 

skills in their real lives (p>.05) (see Table 1).  Thirty-five percent of Korean students 

(n=42) and twenty percent of U.S. students said they had used multiplication skills as 

the additive/equal group model in their real lives (see Table 2). 

Tables         *p<.05, ** p<.01, ***p<.001 

        KOREA (n=120)      USA (n=120) 

     Correct   Incorrect   No Resp.   Correct   Incorrect   No Resp.   

Definition of multiplication*** 46.7%     52.5%      0.8% 73.3%     26.7%     0% 

Creating a word problem***  70.8%     17.5%     11.7%  55.8%     43.3%     0.8% 

Connecting a word problem  70.8%     29.2%       0%       54.6%     45.4%     0% 

 to a number sentence **   

Explaining the meaning of the problem   73.3%      25.0%         1.7%  75.8%      23.3%      0.8% 

Identifying the situations**       46.7%      50.0%         3.3%  27.5%      69.2%      3.3% 

Explaining real life applications         36.7%      60.0%         3.3%     25.0%     71.7%      3.3% 

Table 1: Third graders’ conceptual understanding of basic multiplication facts (N=240) 

 *p<.05, ** p<.01, ***p<.001 

   Additive(A)         Array(R)    Multiplicative(M)   A & R     A & M   Incorrect   No Resp.  

Definition of multiplication *** 

 KOREA 40.0%          0.8%          5.8%        0%        0%      52.5%     0.8% 

 USA  44.2%            20.8%          4.2%        7.5%     0%       23.3%   0%        
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Creating a word problem    

 KOREA 63.3%          4.2%          5.8%        0%        0%      25.0%     1.7%       

 USA  45.8%              5.8%          7.5%        0.8%     0%     39.2%   0.8%   

Explaining the meaning of a problem*** 

 KOREA 67.5%          2.5 %         4.2%        0%         0.8%    23.3%     1.7% 

 USA  40.8%            23.3%          5.0%       11.7%    0%      18.3%   0.8%   

Identifying the situations 

 KOREA 35.0%          5.0 %         2.5%            0.8%     0%     53.3%     3.3% 

 USA  20.0%              5.8%          1.7%         0%        0%     69.2%   3.3%   

Table 2: Models of multiplication situations (N=240:120 for each country) 

 DISCUSSION AND CONCLUSIONS 

The analysed data of this study yielded results supporting previous international 

comparative studies. Korean third graders outperformed the U.S. students in creating 

multiplication word problems, constructing a number sentence to represent a word 

problem, and identifying real life situations in which they utilize multiplication skills. 

The Principles and Standards for School Mathematics (NCTM, 2000) advocates that a 

balance and connection between conceptual understanding and computational 

proficiency are required for students to develop fluency in mathematics.  For example, 

when multiplication facts are taught for conceptual understanding and connected to 

other mathematics concepts and real-world meaning, students perform better on 

standardized tests and in more complex mathematics applications (Campbell & Robels, 

1997). This study indicates that Korean students have good understanding of 

multiplication concepts. 

One of the interesting findings in this study was that U.S. students gave better 

definitions of multiplication, yet they were not able to apply this knowledge to creating 

a multiplication word problem and a number sentence that corresponded with the 

problem. In the meantime, Korean students were better able to explain word problems 

and construct the number sentences.  However, their ability to explain the meaning of 

the specific problem (7x6) was not significantly better than that of the U.S. students. 

Korean students better identified the situations in which they needed to use 

multiplication in their real lives, even though they were not more capable of explaining 

how multiplication skills were specifically used.  This implies that Korean teachers 

focus more on having students practice constructing word problems and number 

sentences and understanding the word problems rather than letting students explore 

and connect relationships among symbolic representations and different concepts.    

Another important finding in this study suggests that there is a major conceptual 

instructional challenge for classroom teachers of both groups.  When teaching 

multiplication, teachers need to help children understand that multiplication has a 

variety of meanings, which are additive/equal group, array/area, multiplicative 

comparison, and combination/Cartesian.  The models that were provided by third 
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graders in this study were not diverse. The greatest number of students in both 

countries used the additive/equal group model, which was defined by the students as 

repeated addition. Korean students, in particular, dominantly used the additive/equal 

group model.  The array/area model was the second most frequently used model by the 

U.S. students to illustrate the multiplication problem. This indicates that the U.S. 

students possessed more various meanings of multiplication.  Few students used 

multiplicative comparisons and no student provided multiplication meaning as the 

combination/Cartesian model. 

Finally, one of the most significant findings in this study was that students from both 

countries did not clearly explain how multiplication skills were used in their real lives.  

More than three fifth of students (60.0% Korean students, 71.7% U.S. students) could 

not accurately address the question, which was to discuss how multiplication skills are 

used in everyday life by providing a specific example.  

Wallace and Gurganus (2005) recommended that the most effective sequence of 

instruction to help children acquire the concepts of multiplication facts is to introduce 

the concepts through problem situations and link new concepts to prior knowledge. 

With this strategy, students also should be allowed to have concrete experiences and 

semi-concrete representations before purely symbolic notations, explicit instruction of 

rules, and mixed practice are introduced.  
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SELF-MONITORING BY LESSON REPORTS FROM     

TEACHERS IN PROBLEM-SOLVING MATHS LESSONS  

Christina Collet, Regina Bruder and Evelyn Komorek 

Technical University Darmstadt 

 

The following article presents chosen results from a teacher training on the learning of 

mathematical problem-solving in connection with self-regulation. The lessons 

documented during several weeks and the work products submitted by the teachers 

show specific further training effects.   

INTRODUCTION AND THEORETICAL BACKGROUND 

In Germany education standards (KMK, 2003) have been developed which are 

implemented at the moment. Problem-solving plays a central role in these standards, 

and special competencies are required from the teachers to enhance problem-solving in 

maths lessons. Within the scope of a project supported by the DFG (German Research 

Foundation) the Technical University Darmstadt pursues the aim to enhance this 

teaching competency on the basis of an approved, material-based and daily-life 

adapted teaching concept for the learning of problem-solving in connection with 

self-regulation (Komorek et al., 2006). The results of a study with student training 

measures on specific problem-solving strategies and interdisciplinary self-regulation 

stategies reveal specific effects regarding the mathematical performance of the 

students (Perels et al., 2005). On the basis of these training results a teaching concept 

for the enhancement of problem-solving in connection with self-regulation was 

established for teacher further training courses (Collet et al., 2006). The teacher further 

training of the school year 2004/2005 was focussed on the following aspects: 

• A teaching concept for the learning of problem-solving  

• The enhancement of the self-regulation of students by homework  

Teachers who participated in the study were trained on special research contents like 

problem-solving (PS), problem-solving and self-regulation (PSR), self-regulation (SR) 

and the safeguarding of mathematical basis competencies (CG: “Quasi-control 

group”
1
). In a further training at the beginning of the school year and supported by 

supervision (curricular-based (CB), webbased (WB), no supervision (NO)) during the 

school year the teachers had to go through defined fields of competency, depending on 

the further training content. Following a (moderate) constructivist approach and in 

order to reach corresponding effects with the teachers, practical exercises were part of 

the further training at the beginning of the school year and of the supervision during the 

                                           

1
 CG-group is no control group in the proper meaning of the word as the teachers of the group underwent further 

education for mathematical basic competencies and internal differentiation.   
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school year, allowing to experience problem-solving strategies or to construct own 

problems in the sense of the teaching concept.   

Theoretical background and classification of the study  

Shulman (1986) describes six knowledge categories of teacher competencies. The 

present study analyses the PCK (pedagogical content knowledge) in connection with 

action elements for problem-solving in combination with self-regulation. The problem 

with this kind of studies is that there is no clear horizon of expectation (standards) in 

Germany so far. In the American standards for maths teachers (NBPTS, 2001) those 

competencies are already included, however not operationalized. The purpose of the 

present study is to contribute to the development and the use of suitable instruments to 

describe further training effects. Qualitative instruments and conventional quantitative 

methods as well as cross-section and process surveys for the analysis of efficiency are 

applied in a field work with both teachers and students, especially lesson reports and 

work products. The work products are particular problems, long-term homework, 

learning controls and teaching drafts. On the basis of submitted work products it is 

possible to assess if a teacher is able to implement developed knowledge of subjects 

treated in his further training. The lesson reports of the teachers allow to evaluate their 

self-perceived ability with regard to the integration of the further training concept in 

regular maths lessons.  

Questions and hypothesis concerning the chosen tools  

The present study wants to analyse the following research questions: 

• To what extent are self-developed tasks reflecting further training effects? 

(work products) 

• Which effects on the self-perceived implementation of the further training 

content by the participating teachers has the intervention with the further 

training concept? (lesson report) 

Positive trends concerning the implementation of the further training content are 

expected from the lesson reports for those further training groups which were 

supervised throughout the school year (CB, WB). The tasks developed by the teachers 

were expected to show the individual implementation of the concept, following 

Galperin (1974) in three grades of professionality levels depending on different action 

orientations (try-and-error-, pattern-, field orientation). The aim of the further training 

is to acquire at least one pattern orientation. This means that only examples without 

variation are adopted. However, in the long run the aim is to achieve field orientation, 

allowing the teacher to generate own examples which are in line with the concept. The 

quality of the work products alone does not guarantee the successful implementation of 

the concept in maths lessons but is considered as an essential prerequisite.  
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STUDY  DESIGN  

48 teachers (Gymnasium teachers and teachers from other school types) from 9 

schools with classes of levels 7 and 8 took part in the study. At the beginning of the 

school year 2004/2005 the teachers participated in a further training with four training 

modules according to the aforementioned competencies (PS, PSR, SR, CG). Two 

groups were supervised throughout the school year, either by curricular-based training 

courses (CB) or by webbased coaching (WB). Table 1 shows the design of the study 

with different variations of  the further training content and coaching.  

 PS PSR SR CG 

CB   4 8   

WB 11 8 4   

NO   6   8 

Table 1: Design of further training method and content: number of teachers 

Instruments of data collection  

Four developed instruments were applied with the teachers to analyse the further 

training effects from different points of view (www.math-learning.com). A repertory 

grid survey (qualitative) and a teacher questionnaire (quantitative with qualitative 

elements) served as basis for a pre- and post comparison. The repertory grid survey 

allows to record the ideas teachers may have on maths problems by asking them to 

specify characteristic features of problem pairs (Collet et al., 2006; Lengnink et al., 

2003). The teacher questionnaire deals with teaching aims in connection with the 

enhancement of subject-related and multidisciplinary competencies, attitude and 

experience with respect to the integration of individual learning possibilities in the 

lessons and cognitive requirements in the homework. Moreover the teachers’ ideas 

about good maths lessons are collected in concept maps. For the internalization of 

aspects of the teaching concept and the documentation of the concept implementation a 

self-monitoring instrument, the lesson report, was used as processual investigation tool. 

The teachers were asked to document their maths lessons continuously over a period of 

10 weeks. The lesson report consists of 34 items established against the background of 

the teaching concept on the learning of problem-solving and self-regulation in 

connection with basic structural elements of “good” maths lessons. In order to gain 

access to their knowledge regarding the successful concept implementation and to 

maintain the teacher further training effects by individual experience, the teachers are 

asked to submit at least one own work product at the end of the further training. 

Moreover a student performance test with problem-solving tasks was run to show 

possible effects of the further training (Collet et al., 2006). A standardized student 

questionnaire was employed to determine, among others, the self-regulative 

competency and the perception of the lessons. Both instruments were adopted in the 

pre- and post-survey.  
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RESULTS OF THE STUDY 

Selected general results 

The repertory grid survey revealed quantitative and qualitative growth in the 

description of problem features, allowing to draw corresponding conclusions from the 

further training effects (Komorek et al., 2006). The teacher questionnaire 

demonstrates the stability of the values allocated to subject-related and 

multidisciplinary teaching aims as well as to the commitment and self-perception of 

teachers. There is a significant increase in the enhancement of individual learning and 

cognitive homework requirements. The students manifested in their student 

performance test significant increases in performance and a more frequent use of 

heuristics (Komorek et al., 2006).  

Results of the work products 

The work products submitted by the teachers at the end of the school year were 

evaluated by means of a category system, the results were reported to the teachers. 17 

teachers submitted 38 work products in total (8 working sheets, 5 particular problems, 

4 learning controls, 8 long-term homeworks, 13 lesson designs). The following aspects 

were taken into account for the evaluation of the work products: subject-related 

criteria, aspects of goal orientation (transparency of the goal for the students, 

clearness of the goal by the teacher), motivation potential, internal differentiation, 

cognitive activation (especially variation of degree of difficulty and task type), student 

activities and self-regulation. The results of the submitted work products prove the 

successful concept implementation by the teachers (Komorek et al. 2006). An 

exemplary work product (shortened version) of a teacher from the problem-solving 

group (PS) shows a specific implementation of the concept (in the sense of field 

orientation). The task, following an upgrading of requirements, starts with low 

requirements and becomes more complex with every subtask. Source of the task is a 

so-called “two-minute task”, taken from a Hungarian TV-show in the sixties.  

Original task from a TV-show: 

“The semicircular disc glides along two legs of a right 

angle. Which line describes point P on the perimeter of the 

half circle?” (Engel, 1998).  The problem for students 

modified by the teacher is: 

• Make a construction of beer coasters or similar 

materials to visualize the problem. 

• Which line describes point P? 

• Explain the form of the curve. 

A student who was working with a dynamic geometry 

software explained her solution of the two latter subtasks as follows:  



Collet, Bruder & Komorek 

PME31―2007 2-173 

Eva:  I didn’t produce a curve but a line. All points of 
P are on this line. When we move the segment 
AB and A'B' on the coordinates, line G is 
always following the movement in a way that it 
goes through point P and P'. I do not have an 
explanation for line G, but I believe that 
whenever a point is attached to G and AB or 
A'B' is moved, it describes a curve.  

The teacher reflects upon the use of the task as follows: 

Teacher: Experimental homework is useful and arouses the cusiosity of many 
students. The goal was reached to make a maximum of students deal with 
this most demanding geometric problem. The written documentation of the 
problem-solving process revealed a multitude of individual perceptions, 
approaches and procedures of the students and also showed the causes of 
possible problems.  

Results of the lesson reports 

1296 lesson reports were presented by 38 teachers who had documented their lessons 

in 15 to 41 periods. From the items collected in a four-stage answer format (3: “very 

true” to 0: “not true”) the following five scales were established: 

• Inner and outer mathematical problem-solving (Cronbachs α=.89; 6 Items) 

• Use of strategies – reflection on action (Cronbachs α=86; 4 Items) 

• Internal differentiation – individual learning (Cronbachs α=.80; 4 Items) 

• Formation of exercise processes (Cronbachs α=.73; 6 Items) 

• Accomplishment of lesson target (Cronbachs α=.86; 4 Items) 

The first three scales were subsumed in a superordinate scale “problem-solving and 

self-regulation“(Cronbachs α=.94; 14 Items). This scale includes elements for the 

enhancement of partial actions of problem-solving, the integration of heuristic and 

self-regulative elements in the lessons and the heterogenity in class. The following is 

focussed on this scale.  

Analyses of trends in connection with the further training method (CB, WB, NO) show 

that curricular coaching or webbased coaching are considered to be a cause for 

significant positive trends towards the implementation of the concept. On the other 

hand the input in the form of a single compact course does not create a positive trend, a 

certain starting level in the context of the enhancement of basic competencies 

notwithstanding. Figure 1 illustrates the trends of the curricular further training group 

(CB) and of the further training group which was not supervised during the school year 

(NO). 
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Fig 1: Trend analysis (scale: “use of strategies – reflection on action“)  

As a processual instrument the lesson report reveals the effect of a concrete 

intervention, resulting of an additional further training course. Coaching throughout 

the school year should influence the variables of the lesson report in a way that the 

participation in this further training produces a significant difference between 

self-perceived teacher action after the further training course at the beginning of the 

school year (first intervention phase) and after the intervention (second intervention 

phase). It was not possible to run a classical baseline phase without placing  excessive 

burden on the teachers. The effect of the additional training on the curricular-based 

group (CB) was analysed with an intervention analysis (ARIMA (1
st
 order 

autoregressive model)). On the 18
th
 day of the study a significant training effect can be 

observed (figure 2). 

As for the integration of heuristic elements it is stated that in the Gymnasiums heuristic 

tools as well as strategies and principles are adopted. The teachers of other school types 

are rather focussing on heuristic tools. Most frequently used heuristic tools were the 

informative figure (122), table (86), graph/diagram (64) and strategies like forward and 

backward working (121). The frequency of mentioned heuristics by the teacher is put 

in brackets.   
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Fig. 2: Intervention analysis (scale: “problem-solving and self-regulation“) 

Conclusion and outlook 

The results of all instruments prove the successful implementation of the concept. The 

work products of teachers are suitable to show competencies acquired in the further 

training. Due to the positive results of this study the collection of work products and 

their evaluation became part of the e-learning training courses (www.prolehre.de), 

organized by the Technical University Darmstadt since 2005. The lesson report as 

processual instrument allows to draw conclusions from the self-perceived action 

competence with respect to the implementation of the concept. The results show that in 

addition to a single compact course further coaching during the school year is 

necessary to enhance the integration of the concept ideas. The multi-perspectivity of 

the applied tools allows a connection of teacher knowledge and practical action with 

regard to the learning of problem-solving and self-regulation according to the proposal 

of da Ponte et al. (2006). 

The results of a follow-up study (one year after the further training) with 11 project 

classes are currently evaluated. They are expected to reveal the long-term effects of the 

further training courses on the students.   
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MATHEMATICS EDUCATION AND TORRES STRAIT ISLANDER 

BLOCKLAYING STUDENTS: THE POWER OF VOCATIONAL 

CONTEXT AND STRUCTURAL UNDERSTANDING1 

Tom J Cooper, Annette R Baturo, Bronwyn Ewing, Elizabeth Duus and Kaitlin Moore 

Queensland University of Technology, Brisbane, Australia 

Torres Strait Islanders (TSIs) are Australian Indigenous people whose lands comprise 

the Islands between Australia and Papua New Guinea. As a consequence of past 

government policies, they share with Aborigines social disadvantages (Fitzgerald, 2001) 

that lead to mathematics underperformance and limit education, employment and life 

chances. This paper reports on an action-research collaboration between our research 

team and a vocational teacher to enable mathematically-underachieving TSI adult 

students to meet the requirements of a blocklaying course. It discusses Indigenous 

vocational mathematics, describes the theories behind our VET Project and the findings 

of the blocklaying collaboration, and reinforces the importance of vocational contexts 

and structural understanding (Sfard, 1991) when teaching vocational mathematics. 

Demand for skilled trades’ workers, such as blocklayers, has increased in response to 

Australia’s economic growth in the past decade. The training of these workers is 

managed through a national system of post-compulsory education (post Year 10) called 

Vocational Education and Training (VET). Standardised national training packages, 

developed through consultation with industry bodies, describe the skills, knowledge and 

assessment needed to perform a trade. Most of this training is delivered by state 

government Technical and Further Education (TAFE) institutes, although schools and 

private institutes are also involved. The training packages do not stipulate learning 

strategies nor take account of cultural difference. It is up to the individual TAFE teachers 

to determine the needs of their students and the “how” of their teaching. This means that 

each TAFE Institute has different methods of catering for low achieving and Indigenous 

students, particularly for students whose mathematics is inadequate for their trade. 

Indigenous students and VET. Indigenous students have the lowest retention rates in 

the Australian school system, often leaving school before completing Year 10 with 

lower levels of mathematics than non-Indigenous students (Bortoli & Creswell, 2004; 

Queensland Studies Authority (QSA), 2004). This has been attributed to racism, 

remoteness, English as a second or third language (ESL), social factors (Fitzgerald, 

2001) and systemic issues including non-culturally inclusive forms of teaching, 

curriculum and assessment (Matthews et al., 2005). As cultural knowledge, mathematics 

is taught from a Eurocentric position which means that Indigenous and other minority 

cultures experience alienation from and conflict with it (Matthews, et al., 2005). This 

flows over to post-compulsory education, where Indigenous students experience anxiety 

in regards to mathematics due to prior negative schooling experiences (Katitjin, 
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McLoughlin, Hayward, 2000). Thus, Indigenous retention in post-compulsory 

education is low and few complete senior secondary subjects at a level that enables them  

to enter University (QSA, 2004). Indigenous students enter VET earlier (the proportion 

of Indigenous students aged 16 years or less entering VET is higher than non-Indigenous 

students) and are less educated (over half at or below Year 10 on entry to VET) and 

more likely to be ESL and remote (DEST, 2003). 

The VET Research Project. Our interest in mathematics education and VET has arisen 

for two reasons. First, most VET training packages contain mathematics requirements 

and assessment that cause problems for TAFE students with low mathematics 

knowledge. Gaining mathematics skills has been identified as a central equity issue in 

education, obviously because mathematics proficiency is “required not only in 

educational contexts but also in employment” (Louden et al., 2000, p. 202). Second, 

VET training requires students to integrate prior and new mathematical understandings 

in a workplace context very different to schooling (Martin, LaCroix & Fownes, 2005). 

This offers an opportunity for new approaches to teaching mathematics that may 

overcome the legacy of long-term school failure. This interest in VET mathematics 

education has led to a VET Research Project
1
 in which we collaborate with TAFE 

teachers across Queensland in a variety of courses and programs to study effective ways 

to teach mathematics to underperforming TAFE students. This paper reports on one of 

these collaborations, a study of TSI TAFE students learning blocklaying mathematics. 

THEORETICAL FRAMEWORKS 

The VET Research Project’s aim is to study the value of utilising vocational contexts to 

teach mathematics to structural understanding (Sfard, 1991). The methodology is 

qualitative, interpretative and intervening, using case-study approaches to investigate 

collaborative action research between us and TAFE teachers in improving mathematics 

education. The project’s participants consisted of the teachers and their students. It has 

two theoretical frameworks, namely, vocational context and structural mathematics. 

Vocational context. The first imperative of the Project, and the TSI collaborative study 

was that mathematics instruction should be situated within a vocational context. This 

came from the findings of our first VET study (Baturo & Cooper, 2006) which focused 

on Aboriginal horticulture students at a community secondary school in a rural area. 

Initially, these students studied horticulture in the morning with a TAFE teacher and 

returned after lunch for mathematics with a school teacher. Then the two components 

were integrated and the students studied horticulture and the associated mathematics all 

day with the TAFE teacher. Our findings were that: (a) separating mathematics and 

horticulture was unsuccessful (most students simply did not attend the mathematics 

lessons); (b) teaching mathematics within a horticultural context was successful as long 

as the TAFE teacher was given content and curriculum support; and (c) horticultural and 

mathematics study was most effective if it integrated authentic tasks such as constructing 

a fence for a park (“doing real work that really matters” – Keller, 2007, p. 2) with virtual 

simulations of the same work. For example, the horticulture students found difficulty in 

determining the number and placement of fence posts even with a calculator because 
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they did not understand the situation as division. A computer simulation (using 

PowerPoint) in which fences could be built with virtual posts and discussed in terms of 

fence distance, post separation and number of posts was found effective in following up 

real life fencing situations.  

It was evident to us that the Aboriginal students preferred to meet mathematics within 

an authentic vocational rather than school-like context (as described in Martin et al., 

2005). This is in line with growing global recognition of context-based initiatives 

such as authentic pedagogy (Newman & Wehlage, 1995) and work-integrated 

learning (Gibson et al., 2006) and the continuing power of seeing cognition in 

situation (Brown, Collins, & Duguid, 1989; Lave, 1988). These approaches (gathered 

together under the title “vocational context” in this paper) posit that knowing and 

thinking should be considered as an interaction between an individual and physical 

and social situations that allow for meaningful constructions and statements about 

learning (Wenger, 1998) and develop schemas that mediate between experience and 

learning (Derry, 1996). They involve a curriculum integrated with VET needs, work 

components to allow learning through experience, relevant placement in VET 

activities, and well-defined logistics for organising, coordinating and assessing 

students (as Bates, 2005, proposed for teacher education). Community involvement 

and ownership that is a consequence of vocational contexts has been identified as the 

single most important factor of Indigenous success in VET courses (O'Callaghan, 2005). 

Structural mathematics. The second imperative adopted by the Project was to always 

take mathematics instruction beyond procedural to structural understanding, at the same 

time contextualising the instruction by incorporating Indigenous culture and perspectives 

into pedagogical approaches (Matthews, Watego, Cooper & Baturo, 2005). The focus on 

structure was due to our prior success with this approach when educating adult 

Indigenous and non-Indigenous teachers and teacher assistants (Baturo, 2004; Baturo & 

Cooper, 2004). It was also reinforced in our first contact with the blocklaying teacher 

where he stated that his students had problems converting from mm to m. He had 

introduced this conversion by modeling 1 m as the length from 0 mm to 1000 mm on a 

measuring tape and then explaining that a decimal point preceded the amount when 

converting mm to m. This had not worked because many students then believed that 6 

mm was 0.6 m, 60 mm was 0.60 m, and 600 mm was 0.600 m.  

THE BLOCKLAYING COLLABORATION 

The government centre in the Torres Strait has a small TAFE campus staffed by non-

Indigenous and Indigenous people, including elders. This campus runs programs on 

skills needed in the islands: general construction, marine studies, horticulture, business, 

art, cultural studies and general adult education. The general construction program takes 

young, predominantly-unemployed, TSI men and trains them for 1.5 years in 

blocklaying. On completion, students go to Cairns (1000 km south on the mainland) and 

can be apprenticed, become labourers for builders, or use their skills to build for 

themselves and their Island Communities. Our collaboration with the TAFE teacher of 

the blocklaying course involved finding ways to develop TSI students' understanding of 
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the mathematics concepts and processes embedded in blocklaying situations sufficient 

for the students to be successful in building block structures and in meeting certification.  

Teacher, course structure and students. The TAFE blocklaying teacher was not 

Indigenous but was a highly qualified master builder with builder-training certification. 

We were impressed that he was already teaching using vocational contexts: (a) building 

walls and small buildings with blocks and soft mortar in an on-campus construction 

centre in a way that allows constructions to be dismantled and blocks reused; and (b) 

taking the students to different Islands to build actual structures (e.g., boat storage 

sheds, retaining walls, a small bridge, school entrance gates) for the community and 

private businesses. He did all the teaching for the blocklaying course and integrated 

mathematics into his blocklaying teaching. As well, he was organising partnerships with 

local industry and island companies and councils to gain full-scale professional projects 

with which the students could network future employment.  

He emphasized learning to build personal and community capacity as much as to gain 

certification: I say to them, do the course and you will be able to build your own house 

even if you don’t go on and get certification. He had built up a strong personal 

relationship with his TSI students that went beyond classroom contact hours. He had no 

training in mathematics education; not surprisingly, he saw mathematics teaching in 

procedural terms (as is evidenced by the measuring tape example described earlier).  

The official course through which blocklaying was taught was Certificate 1 in General 

Construction (as there were not enough master builders in the Torres Strait to enable 

apprenticeships) and ran for 18 months. The course was designed so that, at its end, 

students would have sufficient practical experience to enter into an apprenticeship and 

get recognition that would be equivalent to two years as an apprentice.  

The blocklaying students varied in age from 18-26 years and all were Indigenous. Some 

students came from the outer islands and were selected by their Island’s councils and 

elders to become builders for their communities. Of the ten students interviewed, five 

had completed Year 12; three had completed Year 11; and two others had finished Years 

9 and 10 respectively. However, the mathematical ability of most students was not much 

more than mid elementary school (as is indicated in the mathematics problems they were 

having). This caused problems when mathematics was encountered in the course and led 

to early withdrawal and failure. The mathematics in the blocklaying course was 

supported by module workbooks but the teacher recognized quickly that these 

workbooks were not conducive to Indigenous student learning styles or needs.  

Intervention. We undertook the collaboration at two levels, professional learning and 

planning sessions with the TAFE teacher, and model lessons with the students. Both the 

sessions and the lessons focused on teaching structural understanding of the students’ 

mathematics-learning difficulties identified by the teacher as can be seen in the 

following summaries of interventions for three of these difficulties.  

1) Whole and decimal numbers and conversion from mm to m. A kinaesthetic activity 

from Baturo (2006) reinforcing multiplicative structure in which 9 students in a row 
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are labeled as place value positions in periods of three (1-10-100 ones, 1-10-100 

thousands, and 1-10-100 millions). Other students labeled as digits (say 7) move 

between them as the remaining students use calculators to determine the conversion 

rates (e.g. moving from 10 ones to 1 thousand is multiplying by 100). This is 

repeated with the periods relabeled as mm, m and km and reinforced by metric slide 

rules where a cardboard strip labeled mm, m and km is slid along a place value chart 

allowing, in turn, mm and m to be in the ones position.  

2) Proportion and measurement to interpret house plans drawn with a scale. Two 

PowerPoint virtual activities (Baturo & Cooper, 2006) were designed. The first 

reinforced the relationship between plan and reality in terms of scale. Students 

changed a copy of a rectangle in relation to the original as directed by a scale and 

then translated this scale to a change between mm on plan and m in reality. The 

second reinforced building walls with blocks. Students used virtual pictures of whole, 

half and three-quarter blocks, doors and windows to construct walls and determine 

numbers and types of blocks in relation to area.  

3) Area and volume of footings. A PowerPoint activity was designed for whole class 

discussion to enable area formulae to be discovered and translated to volume 

formulae. Students manipulated pictures of tiles to relate length and width to area and 

then added layers of tiles to a starting base to relate height with area of base.  

Student, teacher and administrator responses. The professional learning sessions and 

the model lessons were videotaped and the blocklaying teacher and TAFE 

administrators were interviewed. The interviews indicated that the blocklaying course 

was considered a success by the students, the teacher and administrators. To date 

attendance and achievement was higher than expected in the course and the students 

were able at the end of the program to build with blocks. As a consequence, the course 

was being maintained at a time when other TAFE institutes were curtailing such 

activities. The TAFE teacher was strong in his praise for the students, saying most were 

employable because they could build with blocks sufficiently well to make money for an 

employer.  

With regard to vocational contexts, responses from students and staff indicated strong 

support for this teaching approach, particularly when it was done through authentic 

tasks that supported the community. Many students stated that they preferred learning 

on the job site to in the classroom. They felt they could understand mathematics if it 

was being implemented at the job site; as Student 1 stated, I like it on-site because 

you can see it and you know what it is. Of course, they were pragmatic; as Student 2 

said when asked about classroom or site, On the site … but a bit of both hey.  

The students were particularly motivated by gaining skills that their Islands could use. 

Providing for their community and helping community members who had helped them 

in the past was important to these students. When asked if he would go to Cairns, 

Student 4 stated, I’d probably stay here and work out on the outer islands. When 

asked his reason, he stated, Help the people and help me. When asked what he 

wanted to do and where, Student 2 said, I want to become a contractor, I want to 
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have a chance to give back to people who have helped me, while Student 5 stated, I 

just want to pass this course … and start my own business … Yeah on TI, there’s a 

couple of outer island people that I want to help get into TAFE and do block work.  

It was also evident that a strong relationship existed between teacher and students and 

was a key factor in the success of the course. A number of students remarked how 

they appreciated the encouragement and support provided by their teacher; Student 3 

stated, He’s a pretty good bloke. He’s not too tough, but when he wants us to do 

something … He’s a good teacher though, while another said, Yeah, he’s alright. He 

doesn’t discourage us if we do something wrong and there’s always encouragement 

from him. The importance of building a relationship was supported by the teacher 

who said, Once I’ve built relationships with them, which takes about two weeks, they 

start to relax a bit with me … When [one student] first showed up I actually threw 

him out of the yard because he wouldn’t speak to me. He wouldn’t communicate. He 

was very withdrawn … Once he decided that he’d get to know me I had no problem. 

That’s the same with all the boys. I have to build a relationship with them before I 

can get them to do anything.  

With regard to structural understanding of mathematics, the students and the teacher 

appeared to find the modeling of the structural ideas useful for their blocklaying 

mathematics. Analysis of the video tapes showed that when students participated in 

the kinaesthetic activity to learn about whole and decimal numbers, the level of 

engagement in the classroom increased. Mathematics related discussion between 

students, teachers, and our research team was also greater than at other times during 

the modeling. The video tape also showed students highly engaged when they were 

presented with the PowerPoint activity on volume. Evidence of this was seen as one 

student controlled the PowerPoint slides and the rest of the class aided him with 

verbal encouragement and suggestions. When we asked at the end of the modeling 

session, Do you like the computer stuff? Most students called out yes, and one 

particular student exclaimed, For sure! One student remarked to his teacher later in 

the day that for the first time, he understood volume; the teacher described it, I was 

just talking to a couple of boys, and they said that they understand the volume better 

on [the data projector]… I did exactly the same thing except I did it on the board. 

They’ve understood this better. [One student] who I thought had grasped it very well, 

just said to me, I understand volume now. 

The feedback from the blocklaying teacher was even stronger; he changed his 

opinion of how to teach mathematics as a result of the intervention. At the end of the 

first research visit, he approached a member of our team and admitted that he initially 

had concerns that the visit would be a waste of time but he was wrong. He said that 

the professional learning and planning sessions and modeling lessons had changed 

his opinion and that the approaches on offer were valuable to him and would prove 

valuable to his teaching. He stated that he was looking forward to the next 

intervention and would implement the ideas and approach with his students.  

 



Cooper, Baturo, Ewing, Duus & Moore 

PME31―2007 2-183 

DISCUSSION AND IMPLICATIONS 

The central implication of the study is that vocational contexts and structural learning of 

mathematics is effective in VET situations. The collaboration with the blocklayers 

showed the efficacy of vocational context in line with the arguments and findings of 

Baturo & Cooper, 2006; Brown et al., 1989; Gibson et al., 2006; & Newman & Wehlage, 

1995. Both teacher and students strongly supported the vocational context approach for 

learning mathematics. The success of the blocklaying course in comparison to other 

TAFE Indigenous initiatives is a strong validation of the effectiveness of the approach. 

One of the reasons for success lies in the course’s organization. Discussions with the 

blocklayer teacher revealed that he met the four areas that Bates (2005) argues are 

important for a successful work integrated program: VET integrated curriculum; 

experiential learning; VET placements and well-organised and implemented course. The 

collaboration also showed the importance of the contexts being authentic in relation to 

community involvement (O'Callaghan, 2005) and being work that matters (Keller, 

2007). The students positively responded to learning that provided them with skills to 

improve their own lives and their community. Also, the students responded well to the 

positive relationship with their TAFE teacher, considered an important attribute of 

successful Indigenous programs (Baturo & Cooper, 2006). They had developed pride in 

their identities as blocklayers, also a basis for success in Indigenous learning (Matthews 

et al., 2005).  

The collaboration also validated the importance of mathematics in VET (Louden et al., 

2000) and the value and significance of structural learning of mathematics (Sfard, 1991; 

Baturo & Cooper, 2006) to students’ successful use of mathematics in workplace 

situations. Although the blocklaying students experienced anxiety towards mathematics 

(Katitjin et al., 2000), they were able to understand the mathematics in blocklaying 

contexts, most likely (as their interview responses disclosed), because it was different 

to schooling (Martin et al., 2005). The collaboration also reinforced the efficacy of 

virtual (PowerPoint) mathematics materials (Baturo & Cooper, 2006) as shown in the 

students’ reactions to the modeling lesson.  
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INTERDISCIPLINARY LEARNING AND PERCEPTIONS OF 

INTERCONNECTEDNESS OF MATHEMATICS 

Ng Kit Ee Dawn, Gloria Stillman and Kaye Stacey 

University of Melbourne, Australia 

This paper studies the effect of interdisciplinary project work on Singapore students’ 

perceptions of mathematics. Interdisciplinary project work aims to prepare students 

for the knowledge-based economy, emphasise links within and between school subjects 

and core skills such as communication. Two scales measuring perceptions of the 

interconnectedness of mathematics were completed by 409 students aged from 12 – 14, 

in 3 schools, before and after participating in a 12 – 16 week project. Amongst 

statistically significant changes was a relatively moderate increase in scores on the 

interconnectedness scale after project work. Students in different ability streams 

perceived and used interconnectedness in different ways both before and after the 

project work. Teaching emphasis on conscious integration of subject areas is needed.       

INTERDISCIPLINARY PROJECT WORK IN SINGAPORE 

Interdisciplinary project work (PW) was introduced as an educational initiative in 

Singapore in 1999 to prepare students to meet the demands of a knowledge-based 

economy (CPDD, 2001). To stay relevant in such an economy, in-depth knowledge of 

specific subjects is insufficient. Students need to integrate ideas from various 

disciplines for problem solving. Curriculum planners in various parts of the world (e.g., 

McGuinness, 1999; NCTM, 1995), including Singapore, have begun to emphasise 

explicit links between school subjects. PW is seen as a platform for incorporating core 

skills and values, and integrating subject-specific knowledge in innovative ways (Chan, 

2001).  

PW contributes to the Singapore vision of Thinking School Learning Nation (Quek, 

Divharan, Liu, Peer, Williams, & Wong et al., 2006). Coping with a knowledge-based 

economy requires meaningful integration of various subject-specific content areas for 

problem solving. Thus, the Singapore Ministry of Education is moving away from sole 

dependence on paper and pencil examinations, and including holistic, student-centred 

learning activities and authentic assessment modes. PW is considered as a “paradigm 

shift” (Quek et al., 2006, p. 14) from teacher-dependent to student-initiated learning. 

The learning outcomes of PW are stated in 4 domains: communication, collaboration, 

independent learning, and knowledge application, which include emphasis of the 

interconnectedness of what is learned (CPDD, 2001). 

PW tasks are mainly adapted from Ministry resources or designed specifically by 

teachers according to yearly themes set by schools. Every PW task anchors in at least 

two or more curriculum subject areas. Ideally a team of at least two teachers from these 

subject areas are allocated to the class. A typical PW task consists of a major driving 

question involving a real-life problem or scenario. Critical intellectual activities are 

generated from the task, with purposeful integration of content from its various anchor 
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subjects. PW is different from the interdisciplinary or integrated curricula espoused by 

many schools in the West (see Jacobs, 1991), where content learning derives from 

thematic-related project tasks and investigations. In Singapore, the necessary content 

and skills are taught during traditional subject-specific lessons, and PW teachers 

provide “just-in-time instructions” (CPDD, 2001) so that groups can work 

independently and creatively while applying the knowledge and skills taught.  

Aims of this study 

The work reported here is part of a mixed methods study into the nature of the thinking 

that students engage in during PW and the effects of PW on their mathematical 

learning. Close analysis of selected groups of students as they work on a project 

enables a study of the interplay between cognitive, metacognitive, and social processes 

during PW.  

A quantitative survey-based study has also been conducted to measure changes in 

various affective measures as students participate in PW, and to observe differences 

between groups of students. A review of the literature relating to links between affect 

and problem solving, of goals and expectations of PW in Singapore, and extensive 

statistical analysis of draft scales led to the identification of three constructs as being 

especially relevant to interdisciplinary learning: 

• confidence in mathematics scale  

• value of mathematics scale  

• interconnectedness of mathematics (ICS) scale, incorporating 2 subscales of 

inter-subject learning (ISL) and beliefs and efforts in making connections 

(BEC).  

This paper will report only results from ICS scale. Results for the other scales can be 

found in Ng and Stillman (2006). Perceptions of the interconnectedness of 

mathematics have not been measured before, to our knowledge. We will report on the 

construction of the scales, differences between groups (gender and educational stream), 

and the impact of PW on students’ perceptions of ICS.  

INTERCONNECTEDNESS IN MATHEMATICS 

One aim of implementing PW in Singapore schools is to make explicit the 

interconnections of subject-specific knowledge so that learners can “transcend subject 

boundaries and make connections between the various subject areas” (CPDD, 2001, p. 

iii). Proponents of the interdisciplinary curriculum (e.g., NCTM, 1995) emphasise the 

importance of drawing links between content and skills of school subjects to encourage 

holistic learning.  

Beliefs, self-confidence, and value in mathematics have been examined by researchers 

(e.g., Schoenfeld, 1989) to draw inferences on students’ affect and problem solving. 

Though there are other Singapore studies on PW, Tan (2002) was the only study to date 

relating mathematics attitudes to PW. He found that a problem-based approach to PW 

improved most of the six dimensions of mathematical attitudes studied from his 
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all-male sample in two educational streams. However, he did not look into students’ 

perceptions of the interconnectedness of mathematics.      

Despite growing emphasis on interdisciplinary learning in curricula, no literature to 

date has been dedicated to quantifying the perceptions of interconnectedness between 

subjects. This study began by examining the Singapore PW goals and identifying three 

components of interconnectedness namely, how students perceive (a) mathematics 

content and skills in relation to other subjects; (b) the usefulness of mathematics in 

understanding other subjects; and (c) the complementary relationship between 

mathematics and other subjects in problem solving. These components represent a 

continuum, from awareness of interconnectedness, to consideration of use, to actual 

use. 

Items were constructed for these three components. For example, for the first 

component, item BEC2 (see Table 1, which gives the final version only) may indicate 

high personal sensitivity to interconnectedness of mathematics. The second component 

arises from assertions among interdisciplinary proponents that students’ understanding 

of one subject can be reinforced by another (Jacobs, 1991). Items focussed on links 

such as whether students recognise the possibility of transferring knowledge across 

subjects (e.g., ISL4). Knowing that interconnectedness exists between subjects does 

not imply action, however. Boix Mansilla, Miller, and Gardner (2000) assert that 

interconnectedness require that students combine discipline-based knowledge to solve 

problems, so the third component (e.g., ISL6) measures the application of mathematics 

and other subjects to solve real life problems, which are usually interdisciplinary in 

nature. High scores here imply flexible integration of knowledge across disciplines, the 

epitome of the goals of interdisciplinary education. 

Although conceived as three components, extensive trialling of the scales, as described 

below, resulted in two subscales for ICS, with good statistical properties. We tried to 

encapsulate the differences in the factors in the two names Inter-subject Learning (ISL) 

and Beliefs and Efforts in Making Connections (BEC). All items from BEC scale 

derived from those proposed for the first component above. ISL items derived from all 

3 components. The final items and scales are shown in Table 1. 

METHODOLOGY 

Construction of the scales 

The first version of the confidence, values and interconnectedness scales comprised of 

45 five-point Likert items. Two expert panels from Singapore and Australia vetted the 

initial items. The three scales were constructed in three phases with 283 students in the 

target age range (12 – 14) from 7 Singapore secondary schools. Care was taken to trial 

with students of a range of English language abilities from government neighbourhood 

schools, to be similar to the 3 schools which undertook the PW study. 

First, items were face-validated by 9 students from three streams in individual 

interviews, who explained their responses and rephrased problematic items. Rephrased 
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versions were re-tested on subsequent interviewees. The 45 items were then 

administered to another group of 36 students twice within one week and 13 students 

with high response inconsistency attended individual face-to-face interviews to 

identify confusing statements for deletion. The scales were reduced to 41 items. 

Second, two schools held a large-scale trial (n = 204). Factor analyses were conducted 

separately on the three scales. Varimax rotation revealed a total of eight subscales, 

including two (ISL and BEC) for ICS as noted above. Table 1 shows basic statistics for 

the scales. Third, test-retest reliability was checked with 34 students who responded 

twice in one month. All subscales displayed moderate to high stability. Future studies 

could add to the development of the ICS scale pioneered by this study.  Full details of 

the development of the scales are given by Ng and Stillman (2006). In the final 

questionnaire, the items were given with others that elicited background information. 

Students were told to respond with reference to their most recent classroom 

experiences.  

Interconnectedness of Mathematics Scale (ICS) (Variance explained = 44.85%) 

Inter-subject Learning (ISL) (α = 0.787; Test-retest r = 0.62) 

ISL1 I have used math while working in another subject before. 

ISL2 I can see links between some math topics and other subjects. 

ISL3 Sometimes I use math to help me understand another subject. 

ISL4 I can use math to help me learn another subject better. 

ISL5 I use another subject to help me learn math sometimes 

ISL6 Sometimes, I combine what I know from math and other subjects to solve 

problems. 

ISL7 Math may share some common topics and skills with other subjects. 

Beliefs & Efforts in making Connections (BEC) (α = 0.587; Test-retest r = 0.53) 

BEC1 I don’t try to make connections between math and other subjects when I learn. 

BEC2 It is important to relate math to other subjects when learning. 

BEC3 I find learning more meaningful when math and other subjects have common 

topics. 

BEC4 Math has no connections with the other subjects I am studying. 

Table 1. The items of the Interconnectedness of Mathematics Scale 

The project work  

The main study centred on the implementation of PW in three Singapore schools. PW 

lessons are incorporated into the normal timetable and students work in groups of 4 or 

5, consulting teachers at least once a week for about 13 weeks, and they also work 

outside class time. Sixteen classes undertook the PW with a total of 632 students, of 



Dawn, Stillman & Stacey 

PME31―2007 2-189 

whom 409 agreed to submit data to the study. In Singapore, students are streamed on 

entry to secondary school. The 16 classes were from the highest (Express) and middle 

(NA = normal-academic) overall abilities in language, mathematics, and science. One 

school had one teacher (mathematics) for PW in each class and the others had two.  

The first author created a PW task on environmental conservation. Ng (2006) describes 

the task “Designing an environmentally friendly building” in detail. The task formally 

combined mathematics, science and geography and aimed to enhance students’ 

environmental consciousness. The flexibility, scope, and breadth afforded by the task 

enabled students from differing ability streams to participate. Extensive design and 

support materials were provided for the teachers. For their final products, students 

constructed physical scale models of their buildings using recycled materials. 

Mathematical concepts and skills include estimating dimensions, making appropriate 

scale drawings, constructing 3-D scale models, costing and evaluating.  

The classes used the project-based approach. They were given a scenario to explore, 

brainstorm, and plan their own schedules for completion. Students collaborated in 

decision making, research, and constructing the prototypes of their buildings. 

Assessment of the task evaluated the process (e.g., drafts) and products produced. Each 

member of the group presented a portion of their work orally to the class. Individual 

and group scores were awarded based on rubrics.  

RESULTS  

Table 2 gives the means and standard deviations for the scores on the two subscales of 

interconnectedness (ISL and BEC) for the whole sample and various subsamples. All 

the means are in the range 3.25 – 3.75, indicating that these groups of students were on 

average about halfway between neutral and agreement on the five point scale. The 

overall ISL mean and the ISL means of all of the subgroups in Table 2 improved after 

the PW experience.  The overall BEC mean shows very little change after the PW 

experience, with some the subgroups making a small increase and some making a 

small decrease from pre-task to post-task.   

The statistical significance of the differences in the table were tested with a general 

linear model (GLM) i.e. a multi-factorial repeated measures ANOVA. The repeated 

measures were the dependent variables (ISL and BEC) scores pre-task and post-task 

(time factor), and there were 3 independent factors: gender, stream and school. 

School differences. The school differences were not statistically significant, and so 

students from the three schools are put together to make one sample.  

Pre-task to post-task differences. The change in ISL on the whole sample was 

statistically significant at the 5% level (Wilks’ Lambda = 0.966, F(1, 391) = 13.760, p 

= .000, ηp
2
 = .034). The effect size of   0.034 (measured by ηp

2
) is between Cohen’s 

(1988) limits of 0.01 for small and 0.06 for moderate effect. The change in BEC from 

pre-task to post-task was not statistically significant (Wilks’ Lambda = 1.00, F(1, 390) 

= 0.014, p = .906, ηp
2
 = .000). 
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Gender differences. The BEC subscale showed a small but significant gender 

difference favouring males (F (1,1) = 4.460, p = 0.035, df = 1, ηp
2
 = .011) but the ISL 

scale did not (F(1,1) = 0.032, p = 0.858, df=1, ηp
2
 = .000). Time-gender interaction 

effects were not significant, implying that gender was not a factor for reaction to the 

PW experiences, but a factor for between-subject differences. 

Stream differences. There were significant differences of relatively moderate effect 

size between Express and NA students for both ISL (F (1,1) = 10.891, p = 0.001, df = 1, 

ηp
2
 = .027) and BEC (F(1,1) = 11.713, p = 0.001, df = 1, ηp

2
 = .029), with express 

students scoring higher. There was no time-stream interaction effect for either ISL or 

BEC, indicating that PW affected the attitudes of each stream in the same way.  

Inter-subject Learning 

(ISL) 

Beliefs and Efforts at 

making Connections (BEC) 

Pre-task Post-task Pre-task  Post-task 

Sample Groups 

mean s.d. mean s.d. mean s.d. mean s.d. 

All (n = 409) 3.52 0.58 3.64 0.53 3.48 0.58 3.49 0.60 

Males (n = 206) 3.51 0.58 3.66 0.60 3.52 0.61 3.49 0.65 

Females (n = 203) 3.53 0.58 3.62 0.47 3.44 0.56 3.48 0.54 

Express (n = 295)  3.59 0.57 3.70 0.50 3.54 0.56 3.57 0.56 

NA (n = 114)  3.35 0.57 3.50 0.59 3.31 0.61 3.27 0.64 

School 1 (n = 151 ) 3.56 0.51 3.61 0.49 3.46 0.59 3.44 0.60 

School 2 (n =  94) 3.40 0.59 3.54 0.64 3.38 0.59 3.36 0.66 

School 3 (n = 163) 3.56 0.63 3.73 0.50 3.56 0.57 3.60 0.53 

Table 2.  Means and Standard deviations for ISL and BEC scores. 

DISCUSSION AND CONCLUSION 

This study has pioneered the quantitative measurement of perceptions of 

interconnectedness of mathematics, providing information about students in various 

groups, and before and after an experience of project work which has appreciation of 

interconnectedness as one of its goals.  

Through a careful process of test development, it was found that perceptions of 

interconnectedness could be summarised in two factors which had good statistical 

properties: inter-subject learning (ISL) and beliefs and effort in making connections 

(BEC). Further research by others on the measurement of perceptions of 

interconnectedness would be welcome, to test this factor analysis beyond Singapore 

secondary school students. Since increasing appreciation of interconnectedness and 

promoting interdisciplinary learning are common goals of school systems, a robust 

analysis of the concept should be very useful.  
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There were differences of relatively moderate effect size between the two ability 

streams, favouring higher ability students, before and after PW. Express students tend 

to perceive the interconnectedness of mathematics more than NA students, and are 

likely to make efforts at making connections such as engaging in using mathematics 

for inter-subject learning. Students in different ability streams seem to define and make 

use of the connections between subjects for their learning in different ways. Although 

the ISL and BEC subscales are still in developmental infancy, information on this 

would assist future facilitation of interdisciplinary learning for students in different 

educational streams. 

Administration of the two subscales showed that there was a small gender difference 

favouring males on BEC, but not on ISL. This provided further evidence that the two 

subscales are indeed different, and added further information to the knowledge of 

gender differences in mathematics in an Asian setting. 

In accordance with the goals of project work, there was a small improvement of scores 

to ISL after participating in the interdisciplinary project. Students after the project 

work were somewhat more likely to appreciate mutual reinforcement of learning 

among mathematics and other subjects. They did not, however, report an increased 

effort to make such connections (BEC). We have no good explanation of why there 

should be an improvement in one of the subscales but not the other, although the 

qualitative data gathered in the study may soon provide some clues. 

An improvement in appreciation of interconnectedness would be expected because of 

the nature of the project experience, which required students to use mathematics in 

conjunction with other subjects. In two schools, students had teachers from different 

subject areas facilitating PW groups.  There are also some reasons why the effect may 

have been small. About half of the students had done project work before, and about a 

third had used mathematics (usually only arithmetic) in their previous PW, so they may 

already have developed some ideas about interconnectedness.  

Classroom observations and teachers’ reports were that the open task was appropriate 

for classes of both ability levels, because the students were largely able to set the 

mathematical demands of the task for themselves. The main mathematical difficulties 

were in fixing the scales for the building and making the 3-D model from 2-D drawings. 

Often these mathematical tasks were delegated to ‘experts’ within the group, so that 

not all group members necessarily had experience of using mathematics in the real, 

interconnected situation. This may have contributed to the small effect size on 

interconnectedness scales. Teachers have to be aware that relevant and conscious 

knowledge application of subject content and skills into the interdisciplinary task is not 

automatic. Similarly, successful integration of the various knowledge and skills from 

different subjects, used together in the task depends heavily on the nature of teacher 

facilitation and close monitoring of student progress. The challenge is to strike the 

right balance in providing guidance within the scope and depth of the theme.  
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Finally, we acknowledge that there are many goals of PW beyond those on which this 

paper has reported. It is not possible to judge the success of either this task in particular, 

or PW in general, from the interconnectedness measures alone.  
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University of Michigan 
 

In this paper, we report on an analysis of the treatment of addition and subtraction of 

fractions in elementary mathematics textbooks used in Cyprus, Ireland, and Taiwan. 

For this purpose we developed and applied a framework to investigate the learning 

opportunities afforded by the textbooks. We found key similarities and differences 

among the textbooks regarding two constructs: first, the presentation of addition and 

subtraction of fractions, examined through the structure, selection and sequencing of 

topics, as well as the worked-out examples and representations employed; and second, 

the textbook expectations manifested in the cognitive demands of the tasks on adding 

and subtracting fractions and the type of the work required from students when 

considering these tasks.  
 

INTRODUCTION 

Textbook analysis, a relatively unexplored field (Johansson, 2003), appears to be 
increasingly attracting the interest of the research community (Pepin, Haggarty, & 
Keynes, 2001; Mesa, 2004; Rezat, 2006). In the last two decades researchers have 

expressed contrasting views as to what one can learn from analyzing mathematics 
textbooks. Some researchers have gone as far as to claim that textbook analysis can 
explain the differences in students’ performance in international comparative studies 

(Fuson, Stigler, & Bartsch, 1988; Li, 2000). Other researchers have argued that 
textbooks exert little influence on instruction and on what students learn (Freeman & 
Porter, 1989). A more balanced viewpoint posits that textbooks afford probabilistic 

rather than deterministic opportunities to learn mathematics (Mesa, 2004; Valverde, 
Bianchi, Wolfe, Schmidt, & Houang 2002). Although this perspective acknowledges 
that textbook analysis is limited to portraying the intended and not the implemented 

curriculum, it holds that important insights can be gleaned from studying textbooks 
used in different countries by illustrating similarities and differences in the 
opportunities to learn mathematics offered to students around the world.  

Studies show significant cross-national differences in the textbooks. Two large-scale 
studies that compared and contrasted the textbooks adopted in almost 40 countries 
concluded that textbooks vary “in a myriad of ways” (Schmidt, McKnight, Valverde, 

et al., 1997, p. 22) and that “they exhibit substantial differences in presenting and 
structuring pedagogical situations” (Valverde et al., 2002, p 17). Small-scale studies 
also found major differences between the mathematics textbooks used in China, Japan, 

the former Soviet Union, Taiwan, and the United States (e.g., Fuson, et al., 1988; 
Mayer, Sims, & Tajika, 1995) or between the textbooks used in different European 
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countries (Pepin et al., 2001). These studies have pursued different textbook-analysis 
approaches. Some have examined the textbooks as a whole, focusing on general 
textbook characteristics (e.g., physical appearance, the organization of the content 

across the book). Critics have argued that this approach, which we call a horizontal 
analysis of textbooks, fails to illuminate substantial differences in the learning 
opportunities offered to students in different countries, since topics are not treated in 

the same manner and with the same degree of emphasis in different textbooks (Howson, 
1995). Other studies have moved into greater depth, attending to the ways in which 
textbooks treat a single mathematical concept (Fuson et al., 1988; Li, 2000, Mesa, 

2004); we consider this approach a vertical analysis of textbooks. This approach, 
however, does not allow situating the concept under investigation within the broader 
context of the textbook. The studies that analyzed textbooks pursuing both a horizontal 

and a vertical analysis illustrate that such a complementary approach is feasible and 
worthwhile (Howson, 1995; Pepin et al., 2001). However, the field seems to be lacking 
a single coherent, useable framework that would allow for systematic fine-grained 

analyses of textbooks. 

In the present paper, we report findings from a larger project in which we developed 
such a framework and applied it to study the treatment of fractions in the mathematics 

textbooks used in three countries, Cyprus, Ireland, and Taiwan. We focused on 
fractions, because teaching and learning fractions has traditionally been considered one 
of the most problematic areas in elementary school mathematics (Lamon, 1999). In this 

paper we scrutinize, in particular, the treatment of the addition and subtraction of 
fractions in these textbooks. As Verschaffel, Greer, and Torbeyns (2006, p. 65) noted 
in their review of the studies published in the last 15 PME proceedings, little work 

appeared in the area of the four operations on fractions, and specifically on the addition 
and subtraction of fractions, an area where even preservice teachers lack conceptual 
proficiency (Philippou & Christou, 1994). We analyzed textbooks from the 

aforementioned countries, because the existence of a national curriculum in each 
country facilitated the selection of textbooks. Notwithstanding this, the three countries 
have significant differences in history, size, language, economy, culture, and student 

attainment in international comparative studies. In addition, our experiences as 
students and teachers of elementary mathematics in these countries provided us with 
the contextual knowledge conducive to such an analysis.  

The goal of our inquiry was twofold. First, we sought to investigate the similarities and 
differences in the presentation of the addition and subtraction of fractions in the 
textbooks of these countries. Second, by analyzing the tasks used in these textbooks, 

we aimed to explore the expectations that the textbook authors appear to hold for 
students when working in this area. By narrowing our attention to the addition and 
subtraction of fractions, we aimed for a more detailed analysis of the two foci under 

consideration, which we considered critical for shaping students’ probabilistic learning 
opportunities. 

 



Delaney, Charlambous, Hsu & Mesa 

PME31―2007 2-195 

METHODS 

In developing the two-layer analytic framework used in the larger project (Figure 1), 
we pursued an iterative approach that combined results from the literature with a 

preliminary exploration of the textbooks used in the three countries. The literature 
review suggested criteria employed in previous cross-cultural textbook studies; we 
filtered and synthesized these criteria considering the particular textbooks to hand.  

 
 

 

 

 

 

 

 

 

 

 

Figure 1. Framework used to analyze the mathematics textbooks. 

For the purposes of the present paper, we analyzed (1) the structure, sequencing, and 
the topics covered with respect to the addition and subtraction of fractions (from the 
horizontal analysis); (2) the different constructs of fractions (cf., Behr, Lesh, Post, & 

Silver, 1983; Lamon, 1999); (3) the representations; (4) the worked-out examples 
employed in the textbooks (from the “what is presented” aspect of the vertical 
analysis); (5) the potential cognitive demands;

1
 and (6) the performance expectations 

(from the “what is expected” aspect of the vertical analysis).  We used the first four 
dimensions to analyze the presentation of the addition and subtraction of fractions and 
the latter two aspects to analyze the textbook expectations.  

We analyzed five textbook series: the fourth-grade Cypriot textbook series used in all 
public schools in the country (Ministry of Education and Culture, 1998), two widely 
used Irish fifth-grade textbook series (Barry, Manning, O’Neill, & Roche, 2003; 

Courtney, 2002) and two fourth-grade textbook series widely used in Taiwan (Li & 
Huang, 2005; Yang & Miao, 2003). The disparity in the grades was due to the different 

                                                 
1
 We analyzed the potential cognitive demands using the task-analysis guide (Stein, Smith, Henningsen, & 

Silver, 2000, pp. 16-21), according to which memorization and procedures-without-connections tasks are 

considered intellectually undemanding and procedures-with-connections and doing-mathematics tasks are 

intellectually demanding. We also distinguished the tasks that require connecting the addition and subtraction 

of fractions to its underlying meaning but expect students to apply a well-established procedure from those that 

connect the procedure to its meaning, but the procedure required is not well-established.     
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grade-placement of the addition and subtraction of fractions in the three countries. The 
content of the Cypriot and the Taiwanese textbooks was translated into English to 
support the cooperative analysis of the content of all three textbooks by all four authors 

and the resolution of the disagreements that emerged.   

FINDINGS 

Presentation: Structure, Sequencing, and Topics Covered.  

We found notable differences among the three countries. First, in Cyprus and Taiwan 
the addition and subtraction of fractions and mixed numbers with like denominators is 
formally introduced in the fourth grade; the additive operations on fractions and mixed 

numbers with unlike denominators are considered in fifth grade. In contrast, both Irish 
textbooks introduce the addition and subtraction of fractions and mixed numbers with 
similar or unlike denominators in fifth grade; no reference is made to adding or 

subtracting fractions in the fourth-grade textbooks.  

Second, the Irish textbooks follow a slightly different sequence in the presentation of 
the content compared to the textbooks used in the other two countries: they first  

introduce the addition and subtraction of fractions with similar or unlike denominators, 
next they consider additive operations on mixed numbers whose fractional part has the 
same or different denominator, and finally, they offer students opportunities to solve 

word problems on the addition of fractions or mixed numbers. In contrast, the Cypriot 
and the Taiwanese textbooks first introduce the addition and subtraction of fractions 
with similar denominators and then move to the addition and subtraction of mixed 

numbers whose fractional part has the same denominator. In both countries, exercises 
that purport to help students develop procedural fluency are interwoven with word 
problems on the addition and subtraction of fractions.  

Third, the textbooks in Ireland and Taiwan connect the addition of fractions with the 
multiplication of fractions as repeated addition; in the Cypriot textbooks, this 
connection is postponed until fifth grade, when the multiplication of fractions is 

formally introduced. In addition, the Taiwanese textbooks build connections between 
the addition of fractions, equivalent fractions, and the division of fractions as repeated 
subtraction by asking students to consider problems such as: “One bag has 100 small 

paper plates. 83 of 1/100 bag of plates equals how many 1/10 bags of paper plates? 
How many 1/100 bag of paper plates?” (Li & Huang, 2005, vol., 1, p. 11).      

Presentation: Subconstructs of Fractions Presented in the Textbooks.  

The part-whole interpretation of fractions is the dominant subconstruct used in all 
textbook series. The measure subconstruct, which is associated with the measure 
assigned to some interval appears less frequently; this interpretation is weakly 

reinforced, since in all cases the measure assigned to the interval(s) under 
consideration (e.g., the length of a line segment, the volume of the liquid in volumetric 
glasses) is already given (i.e., students are not expected to measure the interval). The 

remaining three subconstructs (i.e., ratio, operator, and quotient) are not present in any 
of the textbooks analyzed.     
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Presentation: Representations Employed in the Textbooks.  

The representations in the Irish textbooks consist of mainly pre-partitioned circular 
units. The representations accompanying all worked-out examples and the tasks in the 

Cypriot textbooks are mostly circular or rectangular area representations, which, in all 
but one case (vol. 4, p. 46), are pre-partitioned. In contrast, the Taiwanese textbooks, in 
addition to the circular and rectangular area pre-partitioned representations, include 

linear representations (e.g., ropes) and volumetric representations (e.g., bottles of 
liquids). Besides these continuous models, the Taiwanese textbooks also include 
representations of discrete sets (e.g., bag of cookies or eggs, boxes of stationery 

materials or fruits). No textbook series employs a number line in presenting the 
addition and subtraction of fractions and mixed numbers.      

Presentation: Worked-out Examples.  

We found different approaches for scaffolding student understanding through 
worked-out examples; we illustrate these with the subtraction of mixed numbers 
(Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Worked-out examples on the subtraction of mixed numbers (A: Cypriot 
textbook; B: Taiwanese textbook; C and D: Irish textbooks)  

 
First, the Taiwanese worked-out example suggests two different ways of subtracting 

mixed numbers, the Irish textbooks suggest only one such way, and the Cypriot 
textbook does not suggest an algorithm. Second, whereas the Cypriot and the 
Taiwanese textbooks situate the worked-out example within a particular context, in 

both Irish textbooks the worked-out examples are not contextualized. Third, the 
Cypriot textbook uses two different part-whole representations; the Irish textbooks 
employ at most one. The representation used in the Taiwanese textbooks is closer to 
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the measure subconstruct of fractions. Fourth, the worked-out example in the 
Taiwanese textbooks is based on the comparison interpretation of subtraction, which is 
considered more complex than the take-away interpretation employed in the examples 

used in the Cypriot and one of the Irish textbooks.     

Expectations: Potential Cognitive Demands.  

From the 46 tasks of the Cypriot textbook series, 14 require employing adding and 

subtracting fractions without connections to its meaning. The remaining 32 tasks were 
classified as procedures with connections to meaning, but only 13 expect students to 
employ a procedure that is not modeled in the worked-out examples. The 

procedures-without-connections tasks are longer (e.g., in one such task students are 
expected to solve up to 24 similar exercises). A similar pattern was found in the 
Taiwanese textbooks. From the 44 tasks in the Yang and Miao series, 20 were 

classified as procedures without connections, and 24 as procedures-with-connection to 
meaning. Only 4 of the latter tasks require a procedure somewhat different from that 
modeled in the worked-out examples. Of the 67 tasks of the Li and Huang series, 12 

were coded as procedures without connections and 55 as procedures with connection 
to meaning; yet, only 11 of these tasks require using a procedure that was not 
well-established. In the Irish Barry et al. series, 51 tasks were classified as procedures 

without connections and 9 tasks as procedures with connections that require using a 
well-established procedure. Nine tasks in the Courtney series were classified as 
procedures without connections – some of them have as many as 16 sub-parts – and six 

tasks were classified as procedures with connections that expect students to apply a 
well-established procedure. None of the tasks in the textbooks analyzed was classified 
as a doing-mathematics.  

Tasks in the Taiwanese textbooks coded as procedures-without-connections are more 
complex. For example, besides asking students to find the sum or the difference of two 
fractions or mixed numbers, there are tasks asking students to find the missing addend 

or minuend/subtrahend (e.g., 8 5/12 + ? = 10 1/12; ? + 2 6/7 = 5 3/7; 20 3/16 – ? = 7 
9/16; ? – 1 23/30 = 3 19/30 (Li & Huang, vol. 2, p. 23 & 25). Such tasks do not appear 
in the Irish textbooks; in the Cypriot textbook there are two such tasks, one that 

concerns operations within the unit (e.g., ? + 1/5= 4/5 and 3/7 – ? = 2/7; vol. 3, p. 47) 
and the other on mixed numbers (4 9/12 + 1/12 + ? = 5 3/12 +7; vol. 4, p. 49).  
  
Expectations: Performance Expectations.  

All the tasks included in the Cypriot and the Irish textbooks ask students to provide a 
single answer. Whereas finding an answer is also the predominant performance 

expectation in the Taiwanese textbooks, these textbooks include several tasks in which 
students are asked to explain their solution approach: “The length of the red rope is 2 
37/100 meters. The length of the white rope is 14/100 meters. How long are the two 

ropes altogether? Write the calculation expression for this problem and give the final 
result in the form of a mixed number. Explain your thinking process in solving this 
problem” (Li & Huang, vol.1, p. 47).  
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DISCUSSION  

The framework employed in the present study in analyzing the Cypriot, Irish, and 
Taiwanese textbooks helped identify key similarities and differences in the 

presentation and textbook expectations with respect to the addition and subtraction of 
fractions. For instance, the part-whole subconstruct of fractions was found to be 
dominant in the textbooks of all three countries; in presenting this interpretation of 

fractions the textbooks mainly used pre-partitioned area models. Additionally, the 
textbooks in all three countries introduced the addition and the subtraction of fractions 
and then shifted to the addition and subtraction of mixed numbers. On the other hand, 

our analysis pointed to some notable differences between the Taiwanese textbooks and 
those used in Cyprus and Ireland. In particular, the Taiwanese textbooks employ a 
greater variety of representations compared to the Cypriot and Irish textbooks; they use 

a greater variety of representations (linear, area, volumetric, and discrete sets 
representations), which is considered critical for supporting students’ understanding of 
rational numbers (Lamon, 1999). The Taiwanese textbooks also build more 

connections of the addition and subtraction to the multiplication and division of 
fractions; moreover, they employ more complex situations in their worked-out 
examples and explicitly model more than one way to carry out an algorithm.       

To what extent can the differences between the Taiwanese textbooks, on the one hand, 
and the Cypriot and Irish textbooks, on the other, explain the superior performance of 
the Taiwanese students on international comparative studies? Does the dominant role 

of the part-whole interpretation of fractions suggest that the association, found in a 
previous study (Charalambous & Pitta-Pantazi, 2005) between this subconstruct and 
the additive operations of fractions, is mainly an artifact of the curriculum? What might 

be a more appropriate way of presenting a worked-out example? Although the present 
study does not provide answers to these questions, it illustrates the affordances of a 
more fine-grained textbook analysis facilitated by our framework in generating 

hypotheses that are worth further investigation, and which might help better 
understand the connections between the intended, the implemented, and the attained 
curriculum.    
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This paper investigates how primary students’ knowledge of the structured number 

line develops over time. Effective number line use is impacted by an understanding of 

this graphic as a representation that encodes information by the placement of marks on 

an axis and an appreciation that these marks are representations of length rather than 

labelled points. Generally, the results revealed development of number line knowledge 

over time. However, although correlations between number line items were positive, 

they were only moderate or low. Additionally, there was low shared variance between 

items even though students solved the same items in three consecutive years. 

Noteworthy were the statistically significant gender differences in favour of boys over 

the 3- year-period − findings that warrants further investigation.  

INTRODUCTION 

Structured number lines are often used as instructional aids, in texts, and on tests in the 

primary years. These number lines are distinguished by the presence of marked line 

segments − which are absent from empty number lines (Klein, Beishuizen, & Treffers, 

1998). Advocates of structured number lines argue that they have various benefits for 

students, for example in number sequencing (e.g., Wiegel, 1998) and for concretising 

operations (e.g., Davis & Simmt, 2003). In contrast, others have reported that 

structured number lines are neither effective as conceptual supports (e.g., Fuson, Smith, 

& Cicero, 1997) nor are number line items valid measures of rational number 

knowledge (e.g., Ni, 2000). This disagreement in the literature about the utility of 

number lines is problematic because it fails to provide adequate guidance for educators 

who are trying to improve student outcomes. Thus, further research on number lines is 

essential if they are to be effective conceptual tools for students. Understanding the 

role of tools in developing mathematical proficiency is fundamental to achieving 

equity in student outcomes (Ball, 2004).  

Our previous studies of primary students’ knowledge and use of structured number 

lines (Diezmann & Lowrie, 2006; Lowrie & Diezmann, 2005, in press) have provided 

some insights. However, like much of the literature on number line use, our earlier 

studies generally examined students’ knowledge at a single point in time or over a 

single year. This paper extends on our past work by exploring how students’ 

knowledge of the structured number line develops over a 3-year-period.  
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THE STRUCTURED NUMBER LINE 

The structured number line has potential cognitive advantages for understanding 

various aspects of mathematics. However, underpinning the actual benefit from these 

advantages are key understandings about the structured number line.  

Advantages of Number Line Use  

Cognitively, number lines have three potential advantages for users. The first two 

advantages relate to mathematical variability and perceptual variability (Dienes, 

1964). Mathematical variability is demonstrated on the number line by its use as a 

generic representation or tool which can show many mathematical concepts including 

the position of a fraction in a number sequence and the continuity of rational numbers. 

Perceptual variability in mathematics is illustrated by the number line when it is used 

as one of a variety of representations to show different aspects of the same concept. For 

example, a half can be represented on a number line, on a pie graph, and on an array. 

The final cognitive advantage of the number line is representational transfer (Novick, 

1990).  This process of knowing how to use a representation for a routine task can cue 

the user about how to use it on a novel task. For example, knowing how to identify a 

missing whole number on a number line might cue students about how to find a 

missing decimal number on another number line. Despite the potential cognitive 

advantages, many primary students do not use the number line effectively (Diezmann 

& Lowrie, 2006; Lowrie & Diezmann, 2005).  

Key Understandings about the Number Line  

There are two key understandings that students need to develop about the structured 

number line. The first understanding relates to the number line as a graphic. Structured 

number lines are part of the increasing number of graphics that are used for the 

management, communication, and analysis of information (Harris, 1996). Number 

lines are part of the Axis graphic language that uses a single position to encode 

information by the placement of a mark on an axis (See Appendix for examples of 

number line items). There are five other graphic languages that use distinct perceptual 

elements and encoding techniques (Mackinlay, 1999): Opposed-position (e.g., bar 

graph), Retinal-list (e.g., saturation graphics such as population density), Map, 

Connection (e.g., family tree), and Miscellaneous (e.g., calendar). See Lowrie and 

Diezmann (2005) for a description of these languages and examples. Although these 

six graphic languages differ perceptually, they are related. Our previous research on 

Axis Languages revealed positive and statistically significant correlations at a p ≤  .01 

level between students’ performance and pairings with other graphical languages with 

the exception of the Axis-Opposed-position correlation (r = .15, p ≤  .05) (Lowrie & 

Diezmann, 2005). Opposed-position languages consist of graphics where information 

is encoded by a marked set that is positioned between two axes (e.g., a bar graph). The 

weak correlation between Axis items and Opposed-position items was not surprising 

because these languages are structurally dissimilar with information encoded in one 

dimension two dimensions respectively.  
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The second understanding is that the structured number line is a measurement model. 

Structured number lines have marked line segments, and hence, numbers on the line 

are representations of length rather than simply labelled points (Fuson, 1984). 

Students’ conceptualisation of the number line as a measurement model impacts 

directly on their success. For example, in interviews on number line items with 67 10- 

to 11-year-olds, we found that successful and unsuccessful students differed from each 

other in their use of the number line (Diezmann & Lowrie, 2006). Typically, successful 

students demonstrated a measurement orientation in their identification of unknown 

numbers represented by a letters on a number line: “I chose D because B is (to the) 

right, a bit far away from 20 and C is in the middle and I thought that would be about 

10 and A would be too close to the 0 to be 17” (emphasis added). In contrast, a 

common response from unsuccessful students was to solely employ counting to 

identify the unknown value: “I think it (the number 17) should go there (D) because it’s 

next to 20 and it goes 19, 18 then 17 (emphasis added)”. The use of a simple counting 

strategy is inappropriate because it incorrectly assumes that (1) the marked line 

segments are evenly spaced and that (2) the distance between each segment represents 

one unit. As the spacing between markings of line segments is variable on structured 

number lines and the distance between the segments can represent any number of units, 

students who solely use a counting strategy are unlikely to be successful. Although 

counting alone is an inappropriate strategy for use on the structured number line, it can 

be appropriate for the empty number line (e.g., Klein et al., 1998).  

DESIGN AND METHODS  

This investigation focuses on students’ performance on number line items over a 

3-year period. The longitudinal study employed the repeated collection of mass testing 

data over three annual time intervals. This design allowed for an examination of the 

magnitude and direction of change in students’ knowledge of number lines. This study 

is part of a larger study (Diezmann & Lowrie, 2006; Lowrie & Diezmann, 2005, in 

press) in which we are monitoring the development of primary students’ ability to 

decode the six types of graphical languages including Axis languages of which number 

lines are a key exemplar. Here, we report solely on the longitudinal data for the number 

line items. The research questions were:  

1. How does students’ performance on number line items vary over time? 

2. What are the relationships in students’ performance across number line items 

over a 3-year-period? 

3. Were there are gender differences in students’ decoding performance on number 

line items over time? 

The Participants  

A total of 328 participants (M = 204; F = 174) commenced in the study when they were 

10 to 11 year-olds (Grade 4 in New South Wales; Grade 5 in Queensland) and 

completed the three annual tests in consecutive years. These students were drawn from 
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six primary schools across two states and included students from state, church-based, 

and independent schools. The socio-economic status of the students was varied and 

less than 5% of students had English as a second language.  

The Instrument  

The Graphical Languages in Mathematics [GLIM] Test is a 36-item multiple choice 

test that was designed to investigate students’ performance on each of six graphical 

languages (See Lowrie & Diezmann, 2005). This instrument comprises six items that 

are graduated in difficulty for each of the graphic languages. The four number line 

items used in this study (See Appendix) were drawn from the Axis sub-test. In 

reporting the results, the Axis items are denoted by an item number followed by the 

year of the study. Hence, Axis 2/3 refers to Item 2 in the third year of the study. 

Data Collection and Analysis  

Data on students’ performance on the GLIM test was collected through mass testing of 

the same items in three consecutive years. Students’ performance on these tasks was 

scored as “1” for a correct response and “0” for an incorrect response. Correlations 

were generated from the data to investigate the relationships across number line items 

(Research Question 1). Multivariate and univariate statistics were employed to 

examine students’ performance on number line items over time (Research Question 2) 

and to explore gender and item success (Research Question 3).  

RESULTS AND DISCUSSION 

1. How does students’ performance on number line items vary over time? 

A MANOVA showed a statistically significant difference between year and item 

success over the 3-year period [F(8, 2086) = 11.4, p ≤  .001). Post-hoc analysis 

revealed statistically significant differences in the students’ performances across three 

of the number line items over three years of schooling [Axis 2 (F(2, 1052) = 7.1, p 

≤  .001); Axis 3 (F(2, 1052) = 37.1, p ≤  .001); and Axis 4(F(2, 1052) = 9.1, p ≤  .001) 

(See Table 1). Student performance on Item 1 was not statistically different over time 

[Axis 1 (F(2, 1052) = 2.5, p > .08), however, this was due in part to a ceiling effect. The 

most dramatic improvement in student performance was on Item 3 (from 37% to 67%). 

This item required students to establish the time taken for the second of four stages in 

the life cycle of a butterfly. The correct response required students to identify the 

starting and finishing points of the relevant time period, and to calculate how many 

days in the period (See Appendix). The marking of the line segments in two day rather 

than one day periods added to the complexity of the item.  

2. What are the relationships in performance across number line items over a 

3-year-period? 

Correlations were generated for student responses across the first year and third year of 

the study for each of the four number line items. These four items were positively 

correlated with each other [Axis1/1-Axis1/3 (r = .34, p ≤  .001); Axis2/1-Axis2/3 (r 
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= .08, p >.05); Axis3/1-Axis3/3 (r = .35, p ≤  .001); and Axis4/1-Axis4/3 (r = .20, p 

≤  .001)]. Although three of the correlations had strong statistical significance, the 

items were only weakly or moderately correlated with each other. Previously, we 

found moderate correlations among the six graphical languages (Lowrie & Diezmann, 

in press); however, the results of the present study are surprising since relationships 

were weak between identical items within the axis language over time. Moreover, 

although the students solved these items in each of three consecutive years, the greatest 

shared variance between the items [Axis3/1-Axis3/3] was only 12%. 

 YEAR 1 YEAR 2 YEAR 3 

Item 1 Total .88(.33) 89(.31) .93(.26) 

 Male .91(.28) .91(.29) .95(.31) 

 Female .83(.38) .87(.34) .90(.30) 

Item 2 Total .79(.41) .85(.36) .89(.31) 

 Male .82(.38) .87(.33) .90(.30) 

 Female .75(.44) .82(.38) .88(.33) 

Item 3 Total .37(.48) .58(.50) .67(.47) 

 Male .44(.50) .67(.42) .73(.44) 

 Female .28(.45) .47(.50) .61 (.49) 

Item 4 Total .31(.46) .41(.49) .46(.50) 

 Male .39(.49) .50(.50) .55(.50) 

 Female .21(.41) .29(.46) .36(.82) 

Table 1: Means and standard deviations for number line items (and gender).  

 

3. Were there are gender differences in students’ decoding performance on 

number line items over time? 

The third aim of this investigation was to establish whether there were gender 

differences in students’ decoding performance on the number line items. The mean 

scores for male students were higher than for female students in all four categories 

across the three years of the study (See Table 1). A MANOVA showed a statistically 

significant difference between gender and item success over the 3-year period [F(4, 

1044) = 16.6, p ≤  .001). ANOVAs revealed statistically significant differences across 

the gender variable for each item [Axis 1 (F(1, 1052) = 9.3, p ≤ .001); Axis 2 (F(1, 



Diezmann & Lowrie 

PME31―2007 2-206 

1052) = 5.2, p ≤  .02); Axis 3 (F(1, 1052) = 29.7, p ≤ .001); and Axis 4 (F(1, 1052) = 

42.8, p ≤  .001). These gender differences are consistent with other research. 

Previously, we found statistically significant gender differences in favour of males at 

Grade 4 and Grade 5 on a set of six Axis Language tasks (Lowrie & Diezmann, in 

press). Hannula (2003) also reported that boys outperformed girls on number line tasks 

in a Finnish study of Grade 5 (n = 1154) and Grade 7 (n = 1525) students. Thus, gender 

appears to be a key variable in students’ success on the number line.  

CONCLUSION  

This study revealed three points of interest. First, the moderate or low correlations over 

the 3-year-period between number line items and the low shared variance indicate that 

students perceived these items to be dissimilar rather than similar. One plausible 

explanation for this failure to detect similarity is that students were paying attention to 

the surface detail rather than the structure of the graphic. The number line items are 

similar at a structural level in that each item makes use of the placement of mark on an 

axis (McKinlay, 1999). However, they are dissimilar at a surface level, for example in 

the context, the range of numbers, and the visual presentation of the graphic. A focus 

on the surface detail rather than the structure limits the possibility of representational 

transfer where knowledge of a particular representation is transferred to another 

representation (Novick, 1990). This finding indicates the need for an emphasis on 

perceptual variability (Dienes, 1964) in number line examples. 

Second, the longitudinal results indicate that there can be a dramatic increase in 

students’ performance over a couple of years. It is unlikely that this increase was solely 

due to students’ improved understanding of the number line as a graphic because (1) 

the curriculum did not include explicit instruction about number lines, and (2) in 

addition to knowledge of the graphic, success on graphically-oriented items requires a 

simultaneous consideration of knowledge of mathematical content and context and an 

adequate level of literacy to comprehend the text (Lowrie & Diezmann, in press). It 

seems more likely that with additional experience and schooling, students had 

mastered the mathematical, contextual and/or literacy elements that had previously 

been “stumbling blocks” to success.  

Third, the finding of gender differences is of particular interest because it challenges 

Voyer, Voyer, and Bryden (1995)’s conclusion from a meta-analysis that the only 

gender difference in spatially-oriented tasks in under 13-year-old students is limited to 

performance on mental rotation tests. In this study, we found gender differences within 

and across primary-aged students at three grade levels. Thus, gender differences in the 

latter years of primary schooling warrant further investigation.  
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APPENDIX: NUMBER LINE ITEMS  

1. Estimate where you think 17 should 

go on this number line. 

 

 

2. Estimate where you think 1.3 should go 

on this number line. 

 

(Adapted from Queensland Studies 

Authority, 2000a, p. 11) 

(Adapted from Queensland Studies Authority, 

2000b, p. 8) 

3. The following graph shows the length 

of time taken for the four stages in the 

life of a butterfly. How many days are 

there in the caterpillar stage? 

 

Bay City                  Exton           Yardville 

       

 

4. On the road shown above, the distance 

from Bay City to Exton is 60 kilometres. 

What is the distance from Bay City to 

Yardville?  

(Educational Testing Centre, 2001, p. 2) (National Centre for Educational Statistics, 

2003) 
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REASONING WITH METAPHORS AND CONSTRUCTING AN 

UNDERSTANDING OF THE MATHEMATICAL FUNCTION 

CONCEPT  
Hamide Dogan-Dunlap  

University of Texas at El Paso, USA.  

 

The paper describes the nature of two intermediate algebra students’ use of 

metaphors in constructing an understanding of the mathematical function concept, 

and in reasoning with them while addressing mathematics questions. The 

interview analysis of the two students indicated three categories of metaphor use. 

Furthermore, these metaphors appeared to have encouraged the formation of 

some of the misconceptions reported in literature. 

 

INTRODUCTION 

 

The concept of function is essential to college mathematics learning, especially for 

those covered in courses calculus and up. Because of the importance of function in 

higher mathematical understanding, it is necessary to make sure that students gain an 

accurate understanding of the basics of the concept before taking advanced courses. 

Many students in entry-level courses do not have a background of mathematical 

knowledge from which to attempt to make sense of newly introduced mathematical 

information (Sfard, 1997). Thus they turn to their existing knowledge, which mainly 

originates from everyday experiences. This paper reports on the metaphors 

originating from everyday experiences intermediate algebra students used to 

construct an understanding of the mathematical function concept. 

 

Metaphor 

A metaphor can be defined as an implicit analogy (Presmeg, 1997). Presmeg adds 

that a metaphor has both ground and tension. According to her, similarities between 

concepts constitute the ground and differences constitute the tension. For instance, for 

the mathematical statement, “A is an open set,” the tension of a metaphor may be the 

physical idea of openness (an open space view) without a boundary and the 

mathematical idea of an open set with a boundary. Consider a set of all points that 

satisfy the inequality, x
2
+y

2
<1. Here, the open set is bounded by the unit circle. 

Considering that similarities between concepts (source and target) are mainly 

determined by students based on past experiences, rather than being given to them 

(Sfard, 1997), students, in this case, may apply the no boundary characteristic of the 

source concept, and come to a conclusion that the particular set is not open since it 

has a boundary. Moreover, the students’ misconception may further be strengthened 

if initially introduced examples of mathematical open sets are those without 

boundaries.  
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Metaphors play an important role in reasoning in mathematics (Lakoff and Nunez, 

2000; Presmeg, 1997). Presmeg illustrates how one may reason with metaphors in her 

example of a high school student who used “Dome” metaphor to reason in solving 

the question of finding the sum of the first 30 terms of a sequence (5, 8,11,…). This 

high school student’s personal metaphor seemed to play a significant role in solving 

the problem. The students whose interview excerpts are reported here also appeared 

to reason with their idiosyncratic metaphors in responding to mathematics questions. 

 

Function 

Studies on the function concept focused mainly on students’ conceptualizations 

(Carlson, 1998; Hansson and Grevholm, 2003; Selden and Selden, 1996; Vinner, 

1990; Williams, 1998). Some of the conceptualizations (misconceptions) reported 

are: 1) Function is an algebraic term/a formula/an equation; 2) Functions should be 

given by one rule; 3) Graphs of functions should be regular and systemic; 4) The 

constant algebraic form, y=c, c is a constant, is not considered as the representation 

of a function. The findings of our study indicate that some of these conceptions may 

have been the result of a metaphorical reasoning while attempting to make sense of 

mathematical information. Many studies on the conceptualizations used instruments 

such as paper and pencil tests, which do not reveal metaphorical reasoning. Others on 

the other hand used instruments that may have revealed reasoning with metaphors. 

They however may not have reported the cases because of the differing focus of their 

investigation. We report student responses that appeared irrelevant to the focus of our 

study at first, but revealed meaning and relevance during interviews. 

 

METHODOLOGY 

 

Data reported is based on two intermediate algebra students’ interviews conducted as 

part of a study that gathered concept maps (Novak and Gowin, 1984) and interpretive 

essays along with interviews to investigate students’ conceptualizations as they were 

introduced to the various aspects of the mathematical function concept through out a 

semester in Fall 2003 from two intermediate algebra sections at a four year midsize 

Southwest University in the United States. The intermediate algebra course at the 

University provides basic mathematical concepts and skills that are prerequisite for 

college mathematics courses such as pre-calculus and calculus. Both sections of the 

course were traditional in the sense that its material was covered through a lecture by 

instructor mode. Among the three students who volunteered to be interviewed, two 

displayed reasoning with metaphors originating from everyday experiences. We refer 

to one of the two as student L (American female with an intended major in 

criminology), and the other as student Y (Hispanic-American female with an 

intended major in bilingual education). It should also be noted that student Y’s 

instructor used “blender” analogy to introduce the mathematical function concept.  
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Each interview was videotaped and lasted about an hour and a half. Interviews began 

with more personal questions, and proceeded to questions on the function concept 

and concept maps. Students’ inaccurate responses were not corrected through out the 

interviews in order to further understand the sources of their mistakes, and to 

eliminate the possible influence of the interviewer’s opinion on students’ thought 

processes. Two mathematics graduate students transcribed the interviews, which were 

then analyzed by the same graduate students and the investigator in order to identify 

emerging patterns.  

 

RESULTS 

 

Metaphors and Students’ Descriptions 

During the interviews, students provided descriptions for their understanding of the 

function concept in both everyday and mathematical settings. The descriptions came 

about when students were asked to talk about the terms displayed on their concept 

maps; to talk about what they think of when they hear the word “function;” and to 

address the question, “what a function is.” What follows are the excerpts from the 

interviews providing information on the students’ descriptions. 

 

Student L’s Description 

When student L was asked to tell the first thing she thought of right after hearing the 

word “function,” she replied “relations.” She however did not add anything further in 

support of what she meant by relations. Later in the interview, she was prompted to 

come up with an application of a function. With this question, the interviewer’s intent 

was to investigate whether the student displayed any knowledge of an application 

specifically in the context of mathematics. The student’s response was:      
L:  Well, in terms of math or in terms of? 

Interviewer:  In general. 

L:  Well, something functiony would be, something general is running the way that it 

is supposed to. Or if you are trying to plan a function, it would be something that would 

help something to flow or to run properly. That’s what I would think about the word 

function.  

When asked how she would describe the concept in the context of mathematics, she 

explained: 
L:  In mathematical setting, function would be something that where all of the numbers 

plugged in ..all of the numbers that were plugged in would create mmm something that 

was consistent like a graph it would be consistent. 

Interviewer:  Elaborate on consistent. 

L:  Consistent I think meaning like ..like if I were to be plugging in points on a graph in 

order to get a straight line if I if there were some points that I plotted that would not 

allow me to draw the straight line then then the points that I have, that I was given 

would not be consistent with the graph. Whereas if I had ordered pairs and then I 

plotted them and they did make the straight line then they would be consistent with the 

graph… 
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On this excerpt, she appears to consider the term “consistent” as obtaining what is 

expected. One may notice the similarities between her use of the phrase “running the 

way that it is supposed to” in describing the term (function) from everyday 

experiences, and the use of “consistent” in mathematical setting. In everyday setting, 

she uses the term as an entity that runs as expected, or helps run things properly. In 

mathematical setting, she thinks that a table of values represents a function if the 

expected outcome (a line in her case) is obtained as a result of plotting the table 

values. Notice that her two descriptions share a common notion of “consistent with 

what is expected.” L seems to consider this as a similarity between everyday and 

mathematical meanings of the concept. That is, for her, everyday meanings appear to 

become metaphors that she uses to construct an understanding for the mathematical 

function concept.  

 

Student Y’s Description 

Right after constructing her concept map, student Y was asked to talk about the terms 

and links displayed on her map (See figure 1 for the map). She replied: 
Y: I basically see a function…as a key as an answer like problem like a key when you 

open the door. It is a problem and then function is the answer, a resolution, a 

conclusion to…  

Here, she seems to hold an understanding of a function as being an entity that 

“resolves” problems. Considering the possibility that Y may have provided a 

description from everyday experiences with the concept, during her interview, she 

was further prompted to describe her understanding specifically in the context of 

mathematics. The following excerpt reveals her description in mathematical setting: 
Y: Also like a key like you putting it in like what you do with function you put it in… 

 

 

          

 

 

 

 

 

 

 
Figure 1. Student Y’s concept map (Redrawn). 

 

In this excerpt, she appears to describe a function as a “key” or “the role of a key” to 

solve problems. Later in the interview, she was asked specifically what the term 

“key” meant to her. She stated that she considers “key” as the value of an independent 

variable of an equation with two variables, and that she uses the “key” to “resolve” a 

door/problem by putting the “key” in, and as a result opening the “door.” She seemed 

to be referring to an algebraic equation as representing a door to be resolved, and the 
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value of its variable as a key to be used to evaluate the equation. The following 

excerpt further explains what “key” meant to her in mathematics: 
Y:…like that is the key [pointing to x=2 written on a paper] and you just sort of put it in 

there [pointing to h(x)=5x+1written on a paper] to resolve it, to open the door with… 

Over all, one can see that student Y’s descriptions in both contexts contain terms and 

phrases that are not only similar but many are the same.  

 

Metaphorical Reasoning in Responses to Mathematics Questions  

During the interviews, both students were given various representations, and asked to 

decide whether they formed functions. These representations included numerical, 

algebraic and graphical forms as well as non-examples of functions. What follows are 

the excerpts of students’ responses from the interviews, which shed light on the 

students’ use of metaphorical reasoning while answering the questions. 

 

Student L’s Response 

When student L was given a table of values and asked whether it forms a function, 

after plotting the points, she said “no,” and explained:  
L: Because it didn’t it didn’t flow harmoniously like how this one did. Where it was just 

very simple I would just draw a line this would create some kind of problem for me 

because I will be able to draw the line and there will be my third point it would be 

somewhere off the line… 

Figure 2 shows a section of the video clip 

where student L was explaining why she 

thought the table values did not represent a 

function. As seen on the figure, she was 

focusing on the plotted point seen at the tip of 

her line. She used the particular point to 

determine whether this was the expected  
Figure 2. Video section from L’s interview 

 

type of graph (a line for her case). She seemed to reason with her personal metaphor 

of an entity “running the way that it is supposed to” in responding to the particular 

question. Furthermore, her use of the phrase “flow harmoniously” indicates that she 

may have been considering the graphs of functions as regular/systemic. This is in 

agreement with similar findings reported in literature. Later in her interview when she 

was asked to give an example of a function, she gave the equation, “3x=9,” as one. 

When asked whether we could prove that her example represents a function, she said: 
L: If we were to substitute into x that would equal 9 Ya. I If I were to put 3 into 9 it 

equal, it equal 9 but I did not write x=3…if I were to put x=2, it would not be a function 

because 3 times 2 is 6 that is not 9. 

In this excerpt, L seems to be applying her metaphor of “consistent with what is 

expected” as meaning consistent with the expected result 9. What she appears to 

metaphorically think is that nine is what is expected as a result of a substitution, and 

if she gets 9 for the assigned value of x then her equation represents a function. If she 
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does not obtain 9 then “it would not be a function.” In short, throughout the interview 

student L consistently used her metaphors in her responses to mathematics questions. 

 

Student Y’s Response 

When student Y was given the algebraic expression, h(x)=5x+1, and asked whether it 

represents a function, she said “Ya Ohh No.” After a request for a further explanation, 

she stated: “Not till you have x equaling something…” Recall that student L also used 

a phrase similar to this one in her response regarding whether we could prove her 

example, “3x=9,” forms a function. Student Y consistently used the term “key” to 

metaphorically describe the role of an independent variable in deciding whether an 

algebraic description determines a function. Without the presence of a numerical 

value of an independent variable, she was not willing to call an algebraic expression 

representing a function. Later in the interview, the interviewer also asked whether 

“f(x)=5, x=1” (note that here, x=1 was included to eliminate a possible “no” answer) 

represents a function. Y’s response was: “No, because no x over here [pointing the 

expression, f(x)=5]…” Here, student Y appears not to consider these kinds of 

expressions as forming functions. This is also in agreement with the papers reporting 

a similar conceptualization among high school and college students. Her reasoning 

seems to have been influenced by the metaphors that she used in constructing an 

understanding of the concept in mathematics. That is, according to her metaphors, she 

needs a problem to solve which the constant expressions do not provide. She 

therefore rejects them as function representations. She also reasons metaphorically to 

answer a question of whether a table of values forms a function. She says: “You need 

a problem for that...” Y appears to consider a function as an entity that solves 

problems. She consistently used this notion in determining whether an expression 

represents a mathematical function. It is clear that she reasons with her “Key and 

Door” analogy in responding to mathematical questions.  

 

DISCUSSION AND CONCLUSION 

 

The students used three kinds of metaphors in their descriptions of the mathematical 

function concept, and in their responses to mathematics questions. Table 1 outlines 

the metaphors and the resulting conceptualizations. During the interviews, student L 

consistently used the first two metaphors to describe her understanding of 

mathematical function concept as an algebraic equation or a table of values that leads 

to an expected outcome when graphed. She expected to have linear graphs as a result 

of plotting points. She mainly used graphing as a mean to determine if a given form 

(algebraic expression and table) represents a function. Moreover, she metaphorically 

reasoned that the equations of one-unknowns are the representatives of functions only 

if the assigned values of the unknowns satisfy the equations (i.e., 3x=9 is a function 

representation only when x=3). Similarly, student Y reasoned using the third 

metaphor shown in Table 1 to argue that equations with two variables (i.e., y=3x+1) 

represent functions only if the independent variables are assigned numerical values. 
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This furthermore prevented student L from considering tables of values and constant 

algebraic forms (i.e., f(x)=c) as function representations.  
 

Table 1: Metaphors and Resulting Conceptualizations. 

                  Source                           Attributes                  Target (Conceptualization) 

Functionality of an 

object /Machine 

(Adjective). 

 

 

“Functiony”-

Running the way it is 

supposed to. 

 

 

Equation or table of values whose 

graphs are lines. 

 

Equation with one unknown with 

an assigned numerical value 

satisfying the equation. 

 

Graph of a function is 

regular/systemic. 

 

An entity that runs an 

event (noun). 

To flow or to run 

properly. 

The same as the first case. 

Key and Door (noun) Role of key-resolves 

problems. 

Equation with two variables where 

the independent variable is 

assigned a numerical value. 

 

The constant algebraic form, 

f(x)=c, is not a function 

representation. 

 

In summary, reasoning with the personal metaphors appeared to lead both students to 

the formation of some of the misconceptions reported in literature. They did not seem 

to consider equations as the representations of functions; rather, they seem to 

consider functions as equations. Both students seemed to lack the understanding of a 

function as a relationship. Furthermore, L’s metaphors seemed to have encouraged 

her to consider graphs of functions as regular/systemic. Similarly, Y’s metaphors 

appeared to allow the formation of an understanding that the constant algebraic forms 

do not represent functions.  

 

Even though the findings reported here came from only two intermediate algebra 

students, the number (17 students out of 49) of intermediate algebra students who 

displayed everyday terms (such as machine, computer, and event) on their concept 

maps indicates that the phenomena observed on the two students’ interviews may not 

be unique. It may in fact be common among many students, especially among those 

enrolled in high school and early college mathematics courses. The findings reported 

here however can not be generalized based only on the two students’ cases. Further 

investigation, including more students with a variety of mathematics backgrounds, 

ethnicities, and languages spoken, is in order.  
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Recalling that student Y was from a section whose instructor used a “blender” 

analogy to introduce the mathematical function concept, one implication of the 

findings for the teaching and learning mathematics may be that the teachers of 

mathematics need to be cautious with the use of analogies such as “function 

machine” and “juice maker” in introducing the concept. As Max Black indicates, 

“Similarity is created in the mind of conceivers of the metaphor rather than being 

given to them” (reported in Sfard (1997, page 342)). What is tension in the eye of a 

teacher may become the ground for students. It is an unavoidable fact that students 

bring their everyday experiences into mathematics classroom, and consider them 

during the process of conceptualizing a newly acquired mathematical concept. 

Teachers may need to explicitly cover the relevant similarities between source and 

target concepts whenever there is a potential of applying irrelevant aspects by 

students. In the case of the function concept, the relationship aspect of the analogies 

used needs to be emphasized, and the irrelevant aspects need to be covered explicitly 

to make sure students do not consider these attributes while constructing an 

understanding. 
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The difficulty of teaching and learning mathematics in a language that is not the 

learners’ home language (e.g. English) is well documented. It can be argued that 

underachievement by South African learners in most rural schools is due to a lack of 

opportunity to participate in meaningful and challenging learning experience 

(sometimes due to lack of proficiency in English) rather than to a lack of ability or 

potential. This study investigated how improvement of learners’ English language 

proficiency enables or constrains the development of mathematical proficiency. 

English Computer software was used as intervention to improve the English 

Language proficiency of 45 learners. Statistical methods were used to analyse the 

pre- and post-tests in order to compare these learners with learners from another 

class of 48. The classroom interaction in the mathematics class before and after the 

intervention was analysed in order to ascertain whether or not the mathematics 

interaction has been enabled or constrained. The findings of this study were that, first, 

any attempt to improve the language proficiency of learners with the aim of 

improving academic proficiency should be done in such a way as to develop 

concurrently, both the Basic interpersonal communicative skills and the cognitive-

academic language proficiency; second, proficiency in the language of instruction 

(English) is an important index in mathematics proficiency, but improvement of 

learners’ language proficiency, even though important for achievement in 

mathematics, may not be sufficient to impact on classroom interaction. The teacher’s 

ability to draw on learner’s linguistic resources is also of critical importance. 

INTRODUCTION 

Research study and philosophies dealing with the relationship between language 

proficiency and mathematical proficiency have either positioned the one as dependent 

on the other (Peal & Lampert, Cummins, 1978; Baker, 1988; 1962, Bialystock, 1992, 

in Lyon, 1996; Clarkson, 1992; Wales, 1977; Freitag, 1997; Holton, Anderson, 

Thomas, and Fletcher, 1999, in Albert, 2001; Taylor 2002) or the two as autonomous 

(Macnamara, 1977; Chomsky, 1975; Henney, in Aiken, 1972). In South Africa, even 

though the constitution gives provision for learners to learn in any of the 11 official 

languages of their choice, most learners learn mathematics in English which for most, 

is not their first or home language. Underachievement in Grade 12 mathematics 

examinations has been found to be more prevalent amongst learners who use the 

English language less frequently at home (Simkins in Taylor, Muller & Vinjevold, 

2003) and in areas where English is less frequently used at home.  
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Most research dealing with language issues in mathematics education have 

documented that proficiency in the language of learning and teaching is important for 

mathematical proficiency
1

 (e.g. Howie, 2002). But previous research into the 

relationship between English language proficiency and mathematics proficiency was 

not done in a classroom where there was an explicit attempt to improve learners’ 

language proficiency using computer software. The study reported here investigated 

how the improvement of learners’ English proficiency (using the English literacy 

computer software – ASTRALAB – designed to promote English proficiency) in one 

South African school, enabled or constrained the development of mathematical 

proficiency in learners. The study was organised to answer the broad question: 

Whether and how does improving learners’ proficiency in English enable or constrain 

mathematical proficiency?  

THEORETICAL ORIENTATION 

Douady (1997) contends that to know mathematics involves a double aspect. It 

involves firstly the acquisition, at a functional level, certain concepts and theorems 

that can be used to solve problems and interpret information, and also be able to pose 

new questions_ (p. 374). Secondly, to know mathematics is to be able to identify 

concepts and theorems as elements of a scientifically and socially recognised corpus 

of knowledge. It is also to be able to formulate definitions, and to state theorems 

belonging to this corpus and to prove them_ (p. 375). What role does language play 

in the knowing of mathematics? Pirie (1998) and Driscoll (1983) contend that 

mathematics symbolism is the mathematics itself and language serves to interpret the 

mathematics symbol. In the relationship between language and mathematics, 

language serves as a medium through which mathematical ideas are expressed and 

shared (Brown, 1997; Setati, 2005). It can be argued, as Rotman, (1993, in Ernest, 

1994: 38) does, that mathematics is an activity which uses written inscription and 

language to create, record and justify its knowledge_. Language, thus, plays an 

important role in the genesis, acquisition, communication, formulation and 

justification of mathematical knowledge – and indeed, knowledge in general (Ernest, 

1994; Lerman, 2001).  

It is with the above in mind that this study is informed by the socio-cultural theory of 

learning. The socio-cultural perspective proposes that learning is a social process and 

happens through participation in cultural practices (Doolittle, 1997). Learning, thus, 

involves becoming enculturated and enculturation into a community of practice in 

which a learner finds him/herself and it (learning) is marked by the use of conceptual 

tools like language. Since the production of mathematical knowledge, for example, 

involves participation and negotiation of meaning within a community of practice, it 

then means that the use of language as a communicative tool is integral to the process 

of mathematical enquiry (Siegel & Borasi, 1994). For the socio-cultural view of 

learning, therefore, language is essential for participation in a community of practice. 

                                                 
1
 The use of this term in this study resonates with the understanding of this term as defined by Kilpatrick, Swafford & 

Findell (2001) 
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Language allows meanings to be constantly negotiated and renegotiated by members 

of a mathematics community – except for the mathematics register which has a fixed 

meaning across contexts (Brown et al; Cole and Engeström, in Chernobilsky et al, 

2004). 

RESEARCH DESIGN AND METHODOLOGY 

In order to address the critical question above in this study, a quasi-experimental non-

equivalent comparison group design was used because it was not possible to 

randomly assign learners to groups.  

Population and Sample 

The study involved a total number of ninety-three learners in grade nine. 45 learners 

in grade 9A constituted the experimental group while 48 learners in grade 9G 

constituted the control group (the number 45 and 48 are the number of learners in 

each respective class in the school). Learners in school offer Sesotho, IsiZulu, 

IsiXhosa, Setswana and Sepedi and are fluent in one or more of these languages. 

The research instrument consisted of 35 questions drawn from a wide range of 

mathematical content and word problems which learners have covered in the class. 

They were made up of both multiple-choice questions and questions requiring 

learners to write the answers. The test items were selected from the 2003 Third 

International Mathematics and Science Study (TIMSS) and were modified slightly 

where necessary to suit the context of learners in the study.  

Methods of data collection 

Data from this study was collected over a period of four weeks. Before the 

commencement of the ASTRALAB programme in the first week, the mathematics 

pre-test was administered to both groups. At the end of the implementation phase (in 

the 4
th
 week), the post-test was administered and the experimental class was videoed. 

There were class observations of the mathematics class of the experimental group at 

the beginning of the treatment. The mathematics class of the experimental group was 

also videoed a week following the end of the treatment. The video-taped mathematics 

lessons were used to analyse the interaction and communication in the mathematics 

class. 

Implementation Phase of the ASTRALAB Programme 

Even though the ASTRALAB programme in itself was designed to be used 

individually as instructional learning computer software, for implementation in the 

research school, an adapted version which used an inbuilt projector connected to the 

computer was used. This enabled whole class instruction and thereby avoided the 

fundamental criticism of computer based programme instruction as being an 

individualised approach where instructional situations are cold, mechanical and 

dehumanizing and where interaction between the teacher and learners is highly 

eclipsed (Hergenhahn & Oslon, 2001). Learners were required to participate daily in 

the whole class teaching_ using the programme for a total of 22.5 hours consisting of 
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30 sessions in total. In general, the software provides a unique approach to the 

practice and reinforcement of reading comprehension by building vocabulary, 

spelling, reading fluency...while testing overall comprehension. 

English Pre-test and Post-test 

On the first day of implementation, the ASTRALAB programme instructor gave 

learners in the experimental group a pre-test using the software. He also gave them a 

post test the week following the end of the implementation of the software. The 

results showed a 28.2% general improvement in the learners’ English proficiency 

from pre-test to post test. 

Nieman (2006) notes that the fact that a learner understands the educator in class and 

is able to, with ease, read in the language of teaching and learning does not 

presuppose that such a learner will understand academic texts as easily and write 

fluently. Earlier research by Cummins (1984, in Nieman, 2006) had led him to draw a 

distinction between basic interpersonal communicative skills_ (BICS) and cognitive-

academic language proficiency_ (CALP). While BICS denotes language proficiency 

in a social situation and characterised by interpersonal interaction, CALP positions 

itself as second level of additional language proficiency. This second level of 

language proficiency is what is needed if learners are to read and understand 

scientific reports, tasks or academic assignments in general (Nieman, 2006). From an 

observer point of view, it could be argued that the intervention with the ASTRALAB 

software, even though very interactive in nature, was biased towards the development 

of learners’ basic interpersonal communicative skills. 

ANALYSIS AND FINDINGS 

The data collected from the mathematics pre-test and the post-test constituted the 

quantitative aspect of the study while the data collected from the class observation 

constituted the qualitative part of the analysis.  

Analysis of pre- and post-tests 

1. A comparison of the control and experimental groups before the treatment 

with ASTRALAB ILS indicated that: 

 

• In the test for skewness, there was an even distribution of learners as far as the 

mathematics ability is concerned (skewness = .172). 

• The t-Test and the nonparametric test indicate that there was no statistically 

significant difference (p = .29) in the test results between the two groups before the 

treatment (even though there was a difference in the mean scores in favour of the 

experimental group). 
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PRE-TEST RESULTS POST-TEST RESULTS  

MEAN STD DEV MEAN STD DEV 

EXPERIMENTAL 5.4318 1.9813 6.3556 2.6897 

CONTROL 4.9583 2.2874 4.9286 1.9555 

p-value t-Test: .293  

nonparametric test: .292  

t-Test: .006; 

nonparametric test: .008 

Table 1: Statistical Results 

2. Analysis of the performance in the pre-test and post-test for the control group 

indicated that there was no statistically significant difference (p = .84) between the 

performances in both pre-test and post-test (even though the performance of learners 

in this group was lower in the post-test). 

3. Analysis of performance in pre-test and post-test scores for experimental group 

revealed a moderate correlation (.328) between performance in pre-test and 

performance in the post-test. A t-Test and nonparametric test indicated a statistically 

significant difference (p = .03) between scores in pre-test and those of post-test. 

4. A comparative analysis of learner performance in both control and experimental 

groups in post-test indicate that there was a highly significant difference (p = .008) 

between performance in the experimental group compared to performance in the 

control group.  

5. As far as the pre-test analysis by gender was concerned 

• There was no statistically significant difference between performance of boys 

within and across groups. This was also true of the performance by girls in the pre-

test. 

• In the post-test results for gender, there was no statistically significant 

difference between performance by boys compared to performance by girls within the 

two groups. 

• There was however as statistically significant difference between the 

performance of girls in the experimental group and the performance of girls in the 

control group (there was no difference in the performance of boys across groups in 

the post-test). 

6. As far as the content domains were concerned, there was improvement in all 

content domains in the experimental group but none of the domains recorded a 

statistically significant difference. 

Analysis of classroom interaction 

As noted in previous sections, in addition to algorithmic competence, solving word 

problems and using mathematical reasoning (Moschkovich, 2002), interaction in the 

mathematics class is also important in the teaching and learning of mathematics. If 

the language proficiency of learners was improved, it was also necessary to 

investigate whether and how such improvement of linguistic competence has either 
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enabled or constrained the interaction in the class. The coding system for language 

used by learners and the teacher distinguish when language was used either for 

questioning, justification, explanation, and regulation. The table below shows the talk 

distribution between teachers and learners: 

 PRE-

INTERVENTION 

POST-

INTERVENTION 

 English African 

language 

TOTAL 

English African 

language 

TOTAL 

TEACHER 

UTTERANCE 

195 10 205 164 5 169 

LEARNER 

UTTERANCE 

179 - 179 157 - 157 

TOTAL 374 10  321 5  

       

 

Note that the above table tends to depict a highly interactive class for both the pre- 

and the post-intervention lessons. The table tends also to portray that learners talked 

(almost) as much as the teacher. What the table does not do is indicate the nature or 

quality of the talk by both the teacher and the learners. A careful study of the pre-

intervention lesson and of the post-intervention lesson which takes into consideration 

the nature of the talk indicates that there was no difference in the interactive pattern 

of both lessons. What dominated the classroom interaction in both lessons was first, 

only teacher-learner interaction and learner-content interaction. In both lessons, there 

was no learner-learner interaction. Even though learners were sitting in pairs, the 

class discussion was not structured in such a way as to encourage learners to share 

ideas with their partners about their solution process. Second, in both lessons, much 

of the teacher talk was procedural questions requiring the learners to produce short 

procedural answers. 

Discussions and Conclusions from Research 

Given that there was a highly significant difference between the post-test scores in 

the experimental group and those of the control group, and that the experimental 

group showed a statistically significant higher gains from pre-test to post-test, it can 

be concluded that the improvement of the performance in mathematics from pre-test 

to post-test was not due to chance than due to the fact of having improved the English 

language proficiency of learners. On the other hand, it can be deduced from the data 

that even though the English language proficiency level of learners was improved, 

such improvement had no effect on classroom interaction during the mathematics 

lessons. When one considers these results from the qualitative and quantitative 

analyses of data, one is tempted to conclude that the two provide conflicting results. 

If what is foregrounded in the development of language proficiency in learners is the 
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basic interpersonal communicative skills (BICS) and not both BICS and CALP, there 

is no doubt that learner interaction in the class – an enterprise which demands that 

learners debate, reason, critique, analyse, evaluate, express and justify their opinions 

using academic language in the class – would not be improved. Little wonder that 

learners did not ask questions in the post-intervention class, and the class did not 

become less procedural (and more conceptual and adaptive) by way of the nature of 

talk in the post-intervention lesson. This also means that there is no causal 

relationship between achievement in mathematics and interaction in the mathematics 

class. Improvement in performance does not automatically lead to improvement in 

mathematics communication in class. 

What other conclusion can be drawn from the above seeming dichotomy between test 

scores and interaction in the mathematics class? The present research study is an 

indication of the fact that proficiency in the language of instruction (English) is 

closely linked to achievement in mathematics. But improving learner proficiency in 

English, even though necessary, is not sufficient to impact on classroom interaction. 

In any classroom, the teacher plays a key role in the management of the interaction in 

the classroom (Edwards & Westgate, 1987). The teacher’s ability, therefore, to draw 

on learners’ linguistic resources - one of which is structuring questions to allow 

learners to sufficiently express their thinking - is therefore important.  

Recommendations 

The researcher takes seriously the recommendation by the Centre for Development 

Enterprise that all mathematics (and Science) activities be “closed linked with 

improved language [English] education” (CDE, 2004: 33-34). But any attempt to 

improve the language proficiency of learners with the aim of improving academic 

proficiency should be done in such a way as to develop concurrently, both the Basic 

interpersonal communicative skills (BICS) and the cognitive-academic language 

proficiency (CALP), as Cummins would argue. By so doing, there would be a high 

possibility of learners’ improvement in mathematics learning in English as well as a 

greater classroom interaction.  

Also, appropriate mathematics teacher training (in mathematics) must be 

accompanied by appropriate training of the teachers in effective English 

communication (Howie, 2002) and teacher development in strategies of tapping into 

learners’ linguistic resources. 

Why was there a statistically significant difference in achievement between boys and 

girls from the pre-test and post-test results? Was the language proficiency level of 

girls greatly improved compared to that of boys? What could have been responsible 

for the difference? Are the comprehension stories, for example, used in the 

ASTRALAB ILS gender biased? This could be an important area of research for 

future study as it could provide invaluable information for education software 

developers. 
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Limitations of this Study 

Akin to the limitation by way of the number of learners involved in the study is the 

limitation by way of the duration of the implementation phase. Baker (1993) argues 

that it takes 5 to 7 years to acquire cognitive-academic language proficiency (CALP) 

in a second language. Therefore, a more prolonged intervention using the 

ASTRALAB software would have been worthwhile. 
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VET IN THE MIDDLE:  

CATERING FOR MOTIVATIONAL DIFFERENCES  

IN VOCATIONAL ACCESS COURSES IN NUMERACY 

Bronwyn Ewing, Annette Baturo, Tom Cooper, Elizabeth Duus and Kaitlin Moore 

Queensland University of Technology, Australia 

 

Within Queensland, young people who disengage from schooling before Year 11, are required to 

return to study at school or vocational training institutions in special numeracy and literacy access 

courses if they do not have a job. This paper describes a study of young people’s and teachers’ 

perceptions of teaching and learning at one vocational institution. The study found that the young 

people formed two groups; one which was resistant and resentful, and the other which was 

participatory and indifferent. The first group had to be cajoled and tempted by intrinsically 

interesting mathematics activities while the second was happy to work through symbolically–based 

worksheets. However, regardless of group, most of the access students felt ‘cheated’ by constructivist 

approaches using materials; rather they wanted procedurally based activities like the traditional 

school mathematics classrooms in which they had previously failed. 

INTRODUCTION 

In 2002 the government of the Australian state of Queensland developed a policy 

(titled “earn or learn”) requiring young people to be either engaged in some sort of 

work or to be enrolled in further education or training until they are seventeen years old 

(Queensland Government, 2002). This policy was driven by the need to reduce youth 

unemployment and to alleviate an ongoing shortage of skilled workers. Vocational 

training institutions called Technical and Further Education [TAFE] institutions in 

Australia had been providing numeracy access courses for these disengaged young 

people whose achievement levels were too low to meet numeracy prerequisites of 

traineeships and apprenticeships. Australian young people who leave school early 

generally have low numeracy skills and form a major group within these courses and 

the unemployed (Millar & Kilpatrick, 2005). 

Numeracy skills, disengagement and re-engagement 

Although there is strong support for the importance of numeracy in training and 

employment (Department of Education, 2004; Fitzsimons, 2001; Karmel, 2005), there 

is little research that provides insight into what numeracy skills are required for 

employment and how they can be effectively taught (McLeish, 2002). There is some 

evidence that flexibility with clients’ needs, contextualising numeracy to the culture 

and background of young people (Fitzsimons, 2002; Millar & Kilpatrick, 2005), the 

use of non-scholastic, kinaesthetic, individualised activities to link numeracy with 

vocational interests and illuminating the importance of numeracy in a holistic way 

(McNeil & Smith, 2004) may be effective approaches. However, as McNeil and Smith 

(2004) argue although low-achieving, disengaged young adults are unique in their 

learning needs, and need to be hooked or lured into attempting educational tasks, the 

contextualisation (which is the basis of the hooks and lures) has to be balanced with the 
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learning priorities of the classroom. This balance is particularly difficult when young 

people are in TAFE. First, TAFE colleges use competency-based training frameworks 

which tend to compartmentalise or atomise numeracy topics. Second, as Boaler (1993, 

cited in Fitzsimons, 2002, p. 148) argues:  

… random insertion of contexts into assessment questions and classroom examples in an 

attempt to reflect real-life demand and to make mathematics more motivating and 

interesting … ignores the complexity, range and degree of students experience’s as well as 

the intricate relationships between an individual’s previous experience, mathematical 

goals and beliefs. 

According to the Australian National Training Authority [ANTA] (2004, p. 27) “‘tick 

and flick’ training, is more than a rare occurrence in TAFE classrooms” rather than 

teaching of higher-order thinking skills with high-quality learning outcomes.  

Research indicates that young people disengage from school in Australia because of 

school practices (e.g., uninspiring pedagogy and teaching, unfair treatment and 

disrespect from teachers, and inconsistent discipline - (Smyth, et al., 2000) and the 

economic and academic vulnerability of their low socio-economic status (Finn & Rock, 

1997). Low socio-economic students do not have access to the communicative 

strategies that middle class students have such as Lemke’s (1990, cited in Zevenbergen, 

2000) triadic dialogue which involves teacher question; student response and teacher 

evaluation of students’ response and works to manage student behaviour and stipulate 

class content. This type of dialogue is never explicitly taught to students and exposure 

to the same dialogue at home makes it easier to learn, however this is rare for students 

from lower socio-economic backgrounds (Zevenbergen, 2000). 

Re-engagement of young people requires the interplay of participation and reification 

giving shape to their mathematical understandings. This, according to Ewing (2005) is 

assisted by teaching practices that take account of students’ different learning styles. 

For example, linking numeracy to real life, and ensuring that learning is paced so that 

concepts are understood before further ones considered. 

Methodology 

The study described in this paper is part of a larger Australian Research Council grant. 

The project was funded to investigate the mathematics teaching and learning of 

low-achieving post-Year Ten students in order to develop theories regarding effective 

materials for teaching mathematics in access courses within TAFE’s, secondary 

schools. The project explores the effectiveness of utilising everyday and vocational 

contexts to teach the basic mathematics needed by these students. The methodology 

used in the project is primarily qualitative, interpretative and intervening (Burns, 2000). 

A case-study approach (Yin, 1989) is used to investigate what happens when 

researchers, TAFE, and school teachers collaborate to improve the teaching and 

learning of mathematics. 

The participants for the study consisted of thirty-five students, two teachers and two 

tutors from a TAFE numeracy access course. Many students attended the course under 
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directions from the Queensland Magistrates courts; a significant number had been 

expelled from previous schools or had ‘dropped out’ due to confrontation with 

traditional schooling environments. Students could be considered part of a “street kid” 

sub-culture. The access numeracy course had been developed in recognition of the 

importance of having tailor-made and flexible choices for young people disengaged 

from high school. Its basic premise was to increase fundamental skills, revive 

engagement in training and learning and to provide some routine to prepare students 

for workplace entry or further study. 

Data was gathered through observations of access numeracy classes at the TAFE and 

semi-structured interviews with students and teachers. The foci of the interviews were 

students’ and teachers’ prior numeracy learning and teaching experiences and their 

perceptions of numeracy, the learning and teaching of numeracy, and the access 

numeracy course. 

At the commencement of the project the classes were videotaped for later analysis. 

Interviews with teachers and students were then conducted. All the recorded data was 

transcribed and analysed for commonalities. Categories were developed through an 

evolving process of refinement. These were classified in preparation for intervention. 

The findings from these data are presented. 

Results 

Approximately thirty-five students were enrolled in the numeracy access course in two 

classes with teachers Mary and Kyle who were assisted by one or two tutors.1 The 

students were predominantly fifteen to sixteen years old with equal proportion of male 

and female students and a few Indigenous students. Most of the thirty-five students had 

difficulties within traditional learning environments, low numeracy and literacy skills 

(about mid primary or elementary level), and irregular attendance. Social and 

significant personal problems were also identified. Most students were also enrolled in 

courses in literacy, computers and vocational skills. 

Observations showed that, although student behaviour was, in general not positive for 

learning, there were two categories of students. The first category consisted of students 

whose behaviour was resistant and resentful or, in Ewing’s (2005) terms, 

non-participatory. These students took time to settle into class, and had fluid and 

inconsistent engagement in learning. They actively refused to follow teachers’ 

instructions and argued about doing work (asking why they were doing the work and 

how it was relevant to them), refused to do anything they felt was “childish”, copied 

other students’ work, and behaved dangerously with materials (e.g., throwing scissors, 

slapping rulers), preventing hands-on activities. They needed constant reminders from 

a tutor to stay focused, gave up easily when they encountered difficulty and disengaged 

from the task after a short time span. They openly told peers and staff that “maths 

sucks”, that they “sucked at maths” and hated mathematics. They had a negative 

                                                 

1 All names used in this paper are pseudonyms. 
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attitude to mathematics which is reflected in the words of one student – “I can’t do this! 

I don’t want to! This is too hard!” However, they were less antipathetic towards 

one-to-one tutoring, self-paced workbooks, and peer and teacher interactions that were 

supportive, respectful and equal. Finally, their perceptions of numeracy were negative 

as this interview between the researcher (R) and Jess showed. 

R: Do you feel like maths is important for you in the future? 

Jess: Yes, ‘cos (because) I need to use measurement and volume in plumbing. … I don't 
enjoy maths at all. 

R: What about when you get the right answer? 

Jess: It doesn't bother me. I just don't like it. 

R: Have you ever thought of yourself as someone who's good at maths? 

Jess: Nope, never. 

R: Is there anything you don't like about the maths here in the TAFE class? 

Jess: Just doing stuff that I don't need to know. 

R: What sort of stuff is that? 

Jess: I can't remember ... but the stuff that we've been doing in the past week. ... It was 
just annoying ‘cos (because) I already knew it. I don't see why I had to write it 
down again. 

The second category consisted of students whose behaviour was participatory yet 

indifferent. In general, these participatory students were more likely to ask for help and 

to use the tutors productively. They engaged in tasks more easily and remained focused 

for longer periods and did not give up as quickly as the resistant learners. They worked 

through set booklets at their own, and were willing to tutor peers. They showed little 

interest in numeracy per se or the numeracy activities, but, put up with the required 

workbooks in order to complete the course. Like the resistant students, they also liked 

one-to-one tutoring and supportive environments. Their perceptions were more 

positive, but still showed an underlying dislike of mathematics as the following two 

interview excerpts between the researcher (R) and Sam and Taylor showed. 

Sam: Well, I don't like maths but it has to be done because you use it all through your life. 

R: Do you think it's important? 

Sam: Yeah, it's important … ‘Cos (because) I need it so I can go through life knowing 
what to do instead of going to the shop and getting confused and not knowing how 
much it is. 

R: If you hate maths, why do you come along every week? 

Taylor: Because I want to get my certificate so I can get a good job. 

R: And you think that the maths ... 

Taylor:It will help me in the future … But I hate maths but this is alright. I've always 
hated maths but this is the best maths that I've had. 

Observations showed that the predominant teaching practices evident included 

worksheets, workbooks, and project work. Learning spaces were basic and 
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uninteresting with minimal support material and lack of equipment. The teachers had 

difficulty maintaining general engagement and directing the class because of 

individual students’ demands. They rarely took disciplinary action (and when they did, 

they found it difficult to implement and sustain). Both teachers and tutors had little 

training in how to teach numeracy at the level (middle primary) of the students. They 

tended to focus more on achieving a friendly environment than challenging the 

students mathematically. 

The observational notes showed that one teacher approached the resistant and 

participatory students differently. The first teacher observed, Mary, tried hard to build 

positive relationships with the students, Kym and Dani, as these excerpts from 

observations showed. 

A number of resistant students arrived late, talking loudly over the teacher, and throwing 
things around the room and swearing. Mary did not respond to these behaviours. She 
attempted to continue the lesson, trying to engage the students by using soft words. She 
called one by name, “Kym” and asked “Do you have a worksheet? What are you doing?” 
The teacher handed out a worksheet, to which Kym said, “I hate it … Why do they make 
us do this? I don’t know this!” The teacher was unable to respond as she has been 
distracted by another student (but a tutor manages to get the student on task). Two girls 
requested to leave early. The teacher reminded them that they left early last week and that 
this should be the last time. One girl interrupted her, “We’ll be here other times.” The 
teacher replied, “Do you promise?” The girls answered with a mildly interested “Yeah” 
and walked away. Dani appeared disinterested in the work. Mary attempted to engage him, 
saying, “How about you grab one of those sheets … how about you come over here and sit 
down?” He took a seat at a table with the teacher and four other students. However, when 
the teacher’s attention was focused on other students, Dani got bored, stood up and 
proceeded to walk around the classroom. At this point, three other students left early 
without an explanation. The teacher was unable to stop them. 

Mary’s approach to the participatory students, Eli and Frank in the same lesson, as 

shown in the excerpt below, was different to the resistant students in terms of the 

attention that she gave to the students. 

Eli and Frank were working quietly and apparently efficiently; they did not appear 
distracted by all the commotion in the classroom. Once the disruptive students had left, 
they were quick to take advantage of the teacher’s newly available attention and asked 
many questions. The teacher did not attend to these students until the class had quietened 
down. 

The second teacher, Kyle was more traditional; he focused on numeracy content in a 

procedural manner and attempted to push on with the lesson regardless. He did this for 

both the resistant student, Andy, and the participatory student, Ben. Kyle appeared to 

have only one explanation for given problems as these three interchanges between the 

teacher and the students showed. 

Kyle: Can I show you the next step with the ruler? See how you’ve got the top one right? 
Let me show you the next ones, so when you’re adding together the nine and 
two ... Andy? Andy? Andy? So we want to add together nine … 

Andy: No I don’t want to do it!  
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Kyle: No come one, just watch for a minute, that’s all ... come on, there’s nine plus two 
that makes eleven. Now you can’t fit eleven underneath that, like you did before, 
so you put down the one, off the eleven and you carry one to there, so that’s the 
eleven there now, split up into one and one, now you need to add together one, six 
and seven …  

Andy: I feel like I’m in school again ...  

Kyle: Pardon? Andy: I feel like I’m in school again. 

Kyle: Oh well not for long, because I’m only going to show you once and then you’ll be 
able to do it on your own …  

[The teacher returns later to check on Andy’s progress.] 

Kyle: Okay so you know how to add up now? 

Andy: No, I just copied it off him ...  

Kyle: Why’d you do that? 

Andy: Because I hate maths. 

Kyle: Okay but you could do it with the ruler, couldn’t you? 

Andy: (Yawns really loudly!) 

[Ben asks for clarification in a division task.] 

Kyle: So you go down till you get to the number nearest to 26, which is 24. So when it 
says 3 lots of 8 are 24, it goes in 8 times with a remainder of two. 

Ben: Okay … I’ll try and do this one. 

When Ben still struggled to understand, Kyle explained the procedure again but in the 

same way as the first explanation. The tutor, Jasmine, was then left to address the 

student’s difficulties as this excerpt of an observation showed.  

Kyle again worked through the problem procedurally for the student using almost 

identical language and instruction. Kyle left Ben to Jasmine who was able to elicit 

responses from the student and encouraged him to come to his own conclusions. They 

solved the problem and then tried to identify where difficulties arose for the student. 

Jasmine eventually explicitly told Ben that trying to understand the problem is too hard 

and that he should only worry about ROTE learning the procedure. She said to do it “in 

your head, rather than trying to understand why, because that’s impossible, just try to 

remember that if you put a naught above that number …” 

There was inconsistency between the teachers and tutor instruction. It appears that 

some teachers and tutors were not trying to develop understanding and meaning in the 

mathematics. 

DISCUSSION AND CONCLUSIONS 

The conclusions from the study indicate there are two distinct categories of student and 

that neither is having their numeracy needs satisfactorily met within the TAFE. Both 

categories of students disliked numeracy but the participatory students were willing to 

put up with the numeracy lessons if it enabled them to undertake vocational training. 

The resistant students were not so willing, and had behavioural problems - disrupting 
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the class and attracting the teachers’ attention. In this situation, and despite Mary’s 

intentions, she was not successful with her teaching because of the competing demands 

of the students. The resistant students did not want to study in any situation. Rather, 

they continued to disrupt the class. The participatory students’ needs were not met 

either because of the disruption and included requests for regular sequenced 

worksheets. Consequently any attempt at implementing mathematical investigations 

with hands-on material was thwarted. The repetitive procedural approach used by Kyle 

was also not successful as the participatory students appeared to need more variety 

with explanations. Individual attention appeared to work for most students but the 

TAFE institution did not have the resources (often they were only able to provide one 

teacher and one tutor per class of twenty). 

In the TAFE context the teachers were in the middle of competing forces; what seemed 

to work for one of the two categories was ineffective for the other. This situation was 

exacerbated by the lack of resources, the uninspiring learning spaces, familiarity and 

success in traditional numeracy teaching interactions, and the competing need to make 

progress through outcomes. The TAFE numeracy access course reflected the findings 

of Fitzsimons (2002), and McNeil and Smith (2004). 

Most interesting of all, the students’ perceptions of numeracy and the TAFE 

classrooms indicated that they still believed in the traditional absolutist and procedural 

ideas about numeracy and its teaching that had resulted in their previous failures (and 

that their beliefs appeared to be much stronger than those of high achieving students). 

As well, the behaviour of the resistant students appeared to be a result of rejection of 

education’s capacity to provide social mobility and acceptance of an unskilled 

labouring or unemployed role in society within which they could enact local control, a 

“learning to labour” sub-culture as in Willis (1978). 

The social conditions and resources at the TAFE make any intervention problematic. 

However, the “earn or learn” context provides a framework for emancipation as well as 

oppression. First, the students have to come to the institution and be given 

opportunities for engagement. Second, the interests of the students is located within 

street life and vocational improvement enabling a “street maths” vs “school maths” or 

“vocational maths” vs “school maths” approach to have some resonance. 

To take advantage of this, it is evident that the two types of students need to be 

separated into different classes. The participatory students need to have their numeracy 

horizons widened from workbooks to concepts and strategies. One possibility for this 

process is through a focus on the resilience that has brought them to this position in 

relation to the vocation they wish to take up. Questions such as, what gives these 

students the strength to rebuild their lives, where is the numeracy that underpinned this 

resilience, what numeracy do they need for their vocation, and how can this be linked 

to formal pre-vocational mathematics? 

The resistant students need to look inward but in a different manner. They need to 

develop an identity (and pride) that allows them to see themselves as controlling their 



Ewing, Baturo, Cooper, Duus & Moore 

PME31―2007 2-232 

wider world. Numeracy focusing on the social situations that control them (e.g., money, 

employment, and police) could be a starting point. 
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THE GENDERING OF MATHEMATICS IN ISRAEL AND 

AUSTRALIA 

Helen J. Forgasz  and  David Mittelberg 

Monash University / Oranim, Academic College of Education 

The “Mathematics as a gendered domain” instrument was administered to grade 9 

Israeli Jewish and Arab students. The data were examined for differences in the views 

of the students from the two ethnic groups and also among males and females within 

each group. The instrument was designed and normed in Australia and the Israeli data 

were compared to the Australian findings. Differences between the cultural groups in 

Israel were identified; the Jewish students’ views were more similar to the Australians’ 

than were the Arab students’. The implications of the findings are discussed. 

BACKGROUND 

Gender inequities in mathematics education are frequently reported with respect to 

achievement, participation rates, and in regard to students’ attitudes and beliefs about 

mathematics (e.g., Leder, Forgasz & Solar, 1996). While some changes have been 

reported over time in stereotyped attitudes and beliefs (e.g., Forgasz, Leder & 

Kloosterman, 2004), PISA 2003 results (OECD, nd) revealed that males generally 

outperformed females, while gender differences were found for some countries but not 

in others in TIMSS 2003 (Mullis, Martin, Gonzalez, & Chrostowski, 2004).  

Participation data in Australia (Forgasz, 2006) still reveal that males outnumber 

females in the most challenging mathematics subjects offered at the grade 12 level. 

In Israel, the educational systems for Arabs and Jews are segregated, although both are 

run by the Ministry of Education (Birrenbaum & Fasser, 2006). Hebrew and Arabic are 

the languages of instruction in the pertinent systems, while the intended mathematics 

curricula are the same. Ayalon (2002) maintained that Jewish students generally had 

greater choice of advanced level subjects leading to matriculation than students in 

Arab schools, where advanced courses were often limited to mathematics, sciences, 

and history. The restricted curriculum in Arab schools was hypothesised to benefit 

females with respect to access to valued knowledge such as mathematics (Ayalon, 

2002). Mittelberg and Lev-Ari (1999) reported that Arab girls’ preparedness “to adopt 

a mathematically-based profession in the future is particularly high both when 

compared to Jewish girls as well as Jewish boys” (p.88).  

Based on data from the Israeli Central Bureau of Statistics, it was found that “gender 

inequality among Arab students was relatively moderate, with higher proportions of 

Israeli Arab than Jewish girls taking advanced courses in mathematics (Ayalon, 2002). 

Ayalon (2002) cited findings indicating that between 1948 and 1980 Arab females’ 

enrolments at all levels of secondary education had equalled males’ and that they had 

higher participation rates in post-secondary education. Mittelberg and Lev-Ari (1999) 

reported that Arab females also had high levels of perceived achievement and 
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self-confidence in mathematics and were willing to consider mathematically-based 

studies and professions in the future. However, cultural factors appear to work against 

Arab females being able to capitalise on their potential. Compared to the Jewish 

population in Israel, the Arab population is more conservative and “Arab women are 

not expected to be active outside their homes and labour market participation is still 

low” (Ayalon, 2002, p.63). Indeed, while females comprise 56% of all Arab 

matriculants, only 20% of all Arab women are found in the labour force, compared to 

51% of all Jewish women and 65% of all Arab men (Fogel-Bizau, 2003). 

Jewish students in Israel appear to follow more closely the gender-stereotyped patterns 

of participation reported widely in other western nations such as the USA and Australia. 

That is, more males than females are enrolled in the most challenging mathematics 

courses offered at the secondary level (Mittelberg & Lev-Ari, 1999). In 2003, 

Australian and Israeli grade 8 students participated in TIMMS. The Australians 

(ranked 14) performed slightly better than the Israelis (ranked 19) of the 46 countries 

participating. In both Israel and Australia, there were no significant gender differences 

in performance, although males did slightly better than females (see Mullis et al, 2004). 

It must be recognised that Israeli Arabs comprise only 20% of the Israeli population 

and thus the Israeli TIMMS results reflect more closely the Israeli Jewish students’ 

performance; there is no way of disaggregating the TIMSS data by ethnic groups to 

examine the performances of Israeli Jews and Israeli Arabs. 

In the study reported here Israeli Jewish and Israeli Arab grade 9 students’ beliefs 

about the gender stereotyping of mathematics were compared. Within group gender 

comparisons were also undertaken. Data were also gathered on perceptions of 

mathematics achievement levels which were compared by ethnic group and by gender 

within ethnic group. Further comparisons were made with Australian grade 9 student 

data gathered in an earlier study (see Forgasz, Leder & Kloosterman, 2004). 

AIMS AND METHODS 

The Mathematics as a Gendered Domain instrument was developed by Leder and 

Forgasz (see Leder & Forgasz, 2002 for details) and normed on Australian students in 

grades 7-10 that included 253 (122 males, 131 females) grade 9 students. It is 

comprised of three subscales with 16 Likert-type items scored on five-point scales 

from SD=1 to SA=5 on each. The three subscales are: Mathematics as a Male Domain 

[MD], Mathematics as a Female [FD], and Mathematics as a Neutral Domain [ND]. 

Sample items from each scale include: 

MD: Boys understand mathematics better than girls do 

FD: Girls are more suited than boys to a career in a mathematically-related area 

ND:  Boys are just as likely as girls to help friends with their mathematics 

The instrument was translated into Hebrew and into Arabic and administered to 103 

grade 9 students in 4 Jewish schools and 112 grade 9 students in 3 Arab schools in 

Northern Israel. While recognising that this purposeful sample was not representative 
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of the entire Israeli grade 9 population, it enabled robust comparisons to be made 

between the beliefs of Israeli Jewish and Arab students, and was large enough to make 

comparisons with the earlier gathered Australian data. Also included on the instrument 

was an item asking students “How good are you at mathematics” [HGM]. Students 

responded on a five-point scale ranging from 1=weak to 5=excellent. 

RESULTS 

Israeli and Australian grade 9 students’ perception of mathematics achievement 

Mean scores for perceived levels of mathematics achievement [HGM] were compared 

by country using an independent groups t-test. The Israelis were found to have a 

significantly higher mean level of perceived mathematics achievement than the 

Australians (Israelis: 3.67, Australians: 3.43, p<.01). These findings are inconsistent 

with the TIMSS findings that revealed that the Australians had performed better than 

the Israelis. As noted earlier, Israeli Arabs are a minority of the Israeli population and 

the difference is most likely due to the unrepresentative sampling of Israeli students, 

that is, using approximately equal numbers of Jewish and Arab Israelis. The Israeli 

data were disaggregated by ethnic group, and comparisons between the three ethic 

groups were undertaken. 

Perceptions of mathematics achievement: Ethnic comparisons 

A one-way ANOVA was conducted to determine if there were differences in mean 

scores on students’ perceptions of their mathematics achievement levels by ethnic 

grouping: Israeli Jews, Israeli Arabs, and Australians. Scheffe post-hoc tests were used 

to determine which pairs of mean scores were significantly different. The results are 

shown in Table 1. 

Ethnicity N Mean F, p-level Scheffe post-hoc 

Israeli Jews 103 3.59 4.15, p<.05 Israeli Jews – Israeli Arabs: ns 

Israeli Arabs 107 3.75  Israeli Jews-Australians: ns  

Australians 250 3.43  Arab-Australians: p<.05 

Table 1. HGM: ANOVA results by ethnic group 

As can be seen in Table 1, there was a statistically significant difference between the 

three groups (p<.05). The post-hoc tests revealed that this difference was due to the 

difference between the mean scores for Israeli Arabs and Australians (p<.05) with the 

Israeli Arabs believing they were higher achievers (mean=3.75) than Australians 

(mean=3.43). There were no significant differences in mean scores for the Israeli Jews 

and Israeli Arabs or for the Israeli Jews and Australians. 

Gender differences within each ethnic group were examined using independent groups 

t-tests. The results are shown in Table 2 and show that the only gender difference was 

found among Australian students with males believing they were higher achievers than 

females (M mean=3.56, F mean=3.30). 
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Mathematics as a Gendered Domain: Australia and Israel
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Table 2. HGM: Means and t-test results by gender within ethnic group 

 Male Female  

Ethnicity N Mean N Mean T, p-level 

Israeli Jews 50 3.56 52 3.60 ns
1 

Israeli Arabs 57 3.81 54 3.67 ns 

Australians 121 3.56 129 3.30 -2.28, p<.05 
1 
ns = not significant 

In summary, the Israeli Arabs had the highest perceived mathematics achievement 

levels among the three groups. The beliefs of the Israeli Jews about their mathematics 

achievement levels were similar to those of the Australians, consistent with the TIMSS 

2003 data. Unlike the Australians, however, there were no gender differences in the 

beliefs of Israeli Jews with respect to mathematics achievement levels. 

Mathematics as a gendered domain: Differences by country 

The grade 9 students’ scores on the MD, FD and ND subscales were compared by 

country using independent groups t-tests. Statistically significant differences by 

country for mean scores on each of the three subscales were found. The mean scores 

are illustrated in Figure 1.  

 

 

 

 

 

 

 

 

Figure 1: MD, FD and ND: Mean scores for Australian and Israeli students 

The data in Figure 1 indicate that the Israeli students: 

• Disagrees less strongly that the Australian students that mathematics was a 

male domain (Australia: mean = 2.28; Israel mean = 2.82) 

• Were unsure if mathematics was a female domain while the Australians did 

not believe that it was (Australia: mean = 2.68; Israel: mean = 3.00) 

• Agreed less strongly than the Australians that mathematics was a neutral 

domain (Australia: mean = 3.83; Israel: mean = 3.56). 

Gendered beliefs about mathematics: Ethnic differences 

The mean scores for each ethnic group on each of the three subscales of the 

Mathematics as a gendered domain scale are shown in Figure 2. 
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Figure 2. MD, FD, and ND: Mean scores by ethnic group 

As can be seen in Figure 2, the order of the belief measures on the three subscales was 

the same for all three groups: highest score on ND, and lowest score on MD, that is, 

they agreed most strongly that mathematics was a neutral domain and least strongly 

that mathematics was a male domain. While all three groups strongly agreed that 

mathematics was a neutral domain (means >> 3), for the MD and FD subscales, the 

directions of the beliefs of the Israeli Arabs differed from those of the Israeli Jews and 

the Australians. The Israeli Arabs were unsure if mathematics was a female domain 

(mean approx. 3) whereas the other two groups disagreed that it was (means < 3), and 

the Israeli Arabs believed that mathematics was a male domain (mean > 3) whereas the 

other two groups  disagreed that it was (means < 3). 

ANOVAs followed by post-hoc tests were conducted to determine if there were 

statistically significant ethnic differences in the students’ gendered beliefs on the three 

Mathematics as a gendered domain subscales. The results are shown in Table 3. The 

data revealed that there were statistically significant differences in the mean scores on 

the MD, FD, and ND subscales, and post-hoc tests indicated that the only 

non-significant differences in mean scores were for Israeli Jews and Australians on the 

FD, and for Israeli Jews and Israeli Arabs on the ND.  

The statistically significant findings indicated that: 

• MD: Australians (mean = 2.28) disagreed more strongly than Israeli Jews 

(mean = 2.62) that mathematics was a male domain; Israeli Arabs were not 

sure if mathematics was a male domain (mean = 3.02) 

• FD: Australian (mean = 2.68) and Israeli Jews (mean = 2.71) disagreed that 

mathematics was a female domain; Israeli Arabs agreed that mathematics was 

a female domain (mean = 3.29) 

• ND: All three groups agreed that mathematics was a neutral domain (means 

>3), with the Australians (mean = 3.83) agreeing more strongly than Israeli 

Jews (mean = 3.57) and Israeli Arabs (mean = 3.60). 
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Subscale Ethnicity N Mean 

F, 

p-level Scheffe post-hoc 

MD Israeli Jews 103 2.62 Israeli Jews-Israeli Arabs: p<.001 

 Israeli Arabs 107 3.02
1 

Israeli Jews-Australians: p<.001 

 Australians 233 2.28 

42.26, 

<.001 
Israeli Arabs- Australians: p<.001 

FD Israeli Jews 99 2.71 Israeli Jews-Israeli Arabs: p<.001 

 Israeli Arabs 100 3.29 Israeli Jews-Australians: ns 

 Australians 236 2.68 

36.42, 

<.001 
Israeli Arabs- Australians: p<.001 

ND Israeli Jews 101 3.57 Israeli Jews-Israeli Arabs: ns 

 Israeli Arabs 104 3.60 Israeli Jews-Australians: p<001 

 Australians 224 3.83 

13.89, 

<.001 
Israeli Arabs- Australians: p<.001 

1
 One sample t-test indicated that this mean was not significantly different from 3 

Table 3. MD, FD, and ND: Means and ANOVA results 

Gendered beliefs about mathematics: Gender differences 

To determine if there were gender differences in the grade 9 students’ gendered beliefs 

about mathematics within each ethnic group, independent groups t-tests were 

conducted. The results are shown in Table 4. 

 

 
 

 Male Female  

Ethnicity Subscale
 

All N Mean N Mean t, p-level 

Israeli Jews MD 2.62 49 2.51 53 2.73 ns 

 FD 2.71 50 2.59 48 2.86 2.346, <.05 

 ND 3.57 49 3.57 51 3.56 ns 

Israeli Arabs MD 3.02 55 2.81 51 3.25 3.241, <.01 

 FD 3.29 49 3.39 51 3.20 ns 

 ND 3.60 49 3.58 54 3.62 ns 

Australians MD 2.28 112  2.47 121  2.11 -4.35, <.001 

 FD 2.68 115  2.66 121  2.70 Ns 

 ND 3.83 108  3.79 116  3.87  

Table 4. MD, FD, and ND: Means and t-test results by gender within ethnic group 

A few interesting trends are apparent from the data in Table 4.  

• There was a clear similarity in the belief patterns of the Australian males, 

Australian females, Israeli Jewish males, and Israeli Jewish females. All held 

that mathematics was a neutral domain (means > 3) and disagreed that is was 

either a male or a female domain (means < 3).  

• The pattern was different among the Israeli Arabs. The females believed that 

mathematics was a neutral domain as well as being both a male domain and a 

female domain (means > 3), and the males agreed that mathematics was a 

neutral and a female domain (means > 3), but disagreed that it was a male 

domain (mean < 3).  
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The three statistically significant gender differences, one for each ethnic group, 

showed that: 

• Israeli Jews: Males (mean = 2.59) disagreed more strongly than females 

(mean = 2.86) that mathematics was a female domain [FD] 

• Israeli Arabs: Females agreed (mean = 3.25) and males disagreed (mean = 

2.81) that mathematics was a male domain [MD] 

• Australians: Females disagreed more strongly (mean = 2.11) than males 

(mean = 2.47) that mathematics was a male domain [MD] 

In summary, the Israeli Jews and the Australians (as well as the males and females in 

each country) held similar views. They agreed that mathematics was a neutral domain 

and rejected mathematics as either a male or a female domain. The findings for the 

Israeli Arabs’ were quite different and are ambiguous. They agreed that mathematics 

was both a neutral and a female domain, and were  uncertain if it was also a male 

domain (mean = 3.02). The gender difference on the MD subscale appears to explain 

the overall uncertainty among the Israeli Arabs; while the females agreed that it was a 

male domain (mean = 3.25), the males disagreed (mean = 2.81).  

CONCLUSIONS 

Consistent with the TIMSS findings for mathematics performance (Mullis et al., 2004), 

the beliefs about mathematics performance levels and the gendered beliefs about 

mathematics of all the Israeli students and the Israeli Jewish students but not the Israeli 

Arab students were similar to the Australian students’. On average, the Israeli Jews and 

the Australians believed they were above average in mathematical performance, 

believed that mathematics was a neutral domain, and disagreed that it was either a male 

or a female domain. These findings suggest that there is a cultural similarity between 

the Israeli Jewish and the Australian grade 9 students. The statistically significant 

differences between the mean scores of the two groups indicated that the Australians’ 

beliefs were more strongly held. That Australian society may be less gender 

stereotyped than Israeli society may partly explain these findings but further research 

is needed. It is noteworthy that the Israeli Jewish students’ views were consistent with 

findings from the Mathematics as a gendered domain scale in the USA as well as 

Australia (Forgasz, Leder & Kloosterman, 2004). 

Of the three groups, the Israeli Arabs had the highest perceived levels of mathematics 

performance, a finding that may be partially explained by the limited curriculum 

offerings in Israeli Arab schools (Ayalon, 2002) that may limit students’ perceptions of 

which discipline areas they are relatively stronger or weaker. The Arab Israeli 

students’ gendered views of mathematics were intriguingly different from the views of 

the Israeli Jews and the Australians and are not easily explained. Like the others, the 

Israeli Arabs (both males and females) also believed that mathematics was a neutral 

domain. However, both the males and females simultaneously believed that 

mathematics was a female domain and, while the Israeli Arab males disagreed, the 

Israeli Arab females agreed that mathematics was a female domain. These apparently 
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ambiguous findings strongly suggest that there may be a cultural factor within the 

Israeli Arab community in which there conflicting beliefs associated with the gender 

stereotypes of the adult community and what takes place in classrooms and school 

settings. There may be an unresolved tension between school and post-school 

expectations and employment options for both male and female Israeli Arab students. 

Clearly more research is needed to understand better the ambiguity in the Israeli Arab 

students’ findings about the gendering of mathematics.  
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21ST CENTURY CHILDREN, NUMERACY AND TECHNOLOGY: 

AN ANALYSIS OF PEER-REVIEWED LITERATURE  

Jillian L. Fox  

Queensland University of Technology  

Technology has catapulted young children into a society where numeracy practices 

are integral to their everyday lives and future success. In order to determine the scope 

and foci of the literature on early childhood digital-numeracies, this study examines 

the articles published between 2000 and 2005 in the ERIC database and proceedings 

of the annual conferences of the International Group for the Psychology of 

Mathematics Education [PME]. Overall, this study revealed (1) a lack of 

peer-reviewed articles that discuss, investigate, or examine early childhood 

digital-numeracies; (2) an absence of studies on the prior-to school years, and (3) an 

absence of research exploring the impact of new technologies on young children’s 

numeracy practices.  

INTRODUCTION  

Young children are being born into a world that is built on digital technology −  a 

world where having competence and the disposition to use mathematics in context is 

essential. Considering the widespread demand for a numerate citizenry in a digital age, 

it is essential that young children develop the foundations of digital-numeracies. 

Throughout this paper, the term, “digital-numeracies” is used as a parallel term to 

digital-literacies (Lankshear et al., 1997). Thus, “digital-numeracies” are the numeracy 

practices, behaviours and events which are mediated by new technologies. These 

technologies comprise technological innovations that have been made possible 

through digitization, such as digital music players. They also include “old” 

technologies (e.g., digital television) which have been transformed through the digital 

signal (Marsh et al., 2005). Thus, research on children’s numeracy learning and digital 

technologies is particularly timely.   

Research findings on children’s early mathematical growth (e.g., Baroody, Lai, & Mix, 

in press) together with the growing number of children who spend time in early 

childhood programs has created an impetus for the creation of policies, curricula and 

guidelines that support the development of early years care and education 

(Organisation for Economic Co-operation and Development [OECD] 2006) including 

mathematical proficiency (Ball, 2004; Clements, Sarama, & Di Biase, 2003; National 

Association for the Education of Young Children [NAEYC], 2002; National Council 

for Teachers of Mathematics [NCTM], 2000). Increasingly, digital technologies are 

impacting on everyday life; hence, children’s mathematical proficiency needs to be 

considered in relation to their learning with and from these technologies. Thus, the 

purpose of this paper is to examine the current status of peer-reviewed literature 

pertaining to young children’s (birth to eight years) digital-numeracy practices and 

engagement with new technologies. The outcomes of this review will establish the 
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scope and adequacy of the literature base and provide directions for future research on 

digital-numeracies in the early childhood years.  

21
ST
 CENTURY CHILDREN, NUMERACY AND TECHNOLOGY  

Converging Trends  

The past decade has seen the emergence of three understandings related to young 

children’s mathematical learning in the 21
st
 century. First, the early years of life have 

been highlighted as fundamental to lifelong learning and it has been acknowledged that 

long-term success in learning and development requires quality experiences during the 

“early years of promise” (Carnegie Corporation, 1998). Second, the NCTM (2000) has 

advocated the salient and powerful nature of mathematical proficiency stating that 

“mathematical competency opens doors to productive futures – a lack of mathematical 

competencies keeps those doors closed” (p. 5). Contemporary views and theories 

acclaim that young children are capable of mathematical competencies that are 

extensive and impressive (Clements & Sarama, in press). Third, the influence of 

technology on human life in the new millennium has created a world characterized by 

diverse and energetic communication, vast amounts of information, and rapid change. 

Technology affects the daily lives of every person, directly or indirectly (Williams, 

2002). The coalescence of these three understandings (i.e., early learning, 

mathematical proficiency, technology) indicates a need to consider what we know 

about the development of young children’s digital numeracies. As a prelude to the 

examination of the literature young children’s digital numeracy practices, a brief 

overview of 21
st
 children and the relationship between numeracy and technology is 

presented. 

21
st
 Century Children and their Learning  

Most children of the western world have access to technology and devices that impact 

on their lives – whether they be for entertainment (eg., Playstation©) or day-to-day 

living (e.g., microwave) or in school (e.g., computers). The range of these 

technological devices is expanding and includes console games, digital music players, 

video cams, mobile phones, and various digital toys. As the roots of later competence 

are established long before school age (Bowman, 2001) and findings from 

neuroscience confirm the importance of the connection between young children’s 

experiences and achievements later in life (Bruer, 1999), it is important to consider 

how learning occurs from birth to eight in a variety of contexts in addition to school. 

Opportunities for mathematical experiences and interactions with technology occur 

before children begin school and in parallel with schooling. Thus, research on the 

development of digital-numeracies in young children needs to span various ages and 

learning contexts.  

Numeracy and Technology 

The skills, knowledge, and abilities needed to participate and succeed in 21
st
 century 

society are vastly different to those needed in the previous century. The amplified need 
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for numeracy is a result of the demands of the technologically-oriented age (Her 

Majesty’s Inspectorate, 1998; NCTM, 2000). For example, Steen (1997) argues that 

modern life is dominated by technology, digital tools and devices, and that “Numeracy 

is the currency of modern life” (p. xvii). Steen (2001) also credits the rise in 

quantitative data, numbers, and information to the universal increase in the usage of 

technology, computers, and the internet. Civil rights leader Robert Moses argues that 

mathematics has become a humanitarian issue stating, “children who are not 

quantitatively literate may be doomed to second class economic status in our 

increasingly technological society” (cited in Schoenfeld, 2002, p. 13). Clearly, 

numeracy is no longer the fortune of the elite but a requirement for all citizens. 

Similarly, Malcom (1999) subscribes to the opinion that mathematical achievement in 

a technological and global society will have a major impact on students’ career 

aspirations, their role in society, and even their sense of personal fulfilment. Thus, the 

need to understand and to use mathematics and technology is fundamental to 21
st
 

century life.  

METHOD  

This paper reports on the status of peer-reviewed literature that focuses on early 

childhood mathematics and technology through an investigation of contemporary 

literature in the Education Resources Information Center [ERIC] database and the 

annual conference proceedings of the International Group for the Psychology of 

Mathematics Education [PME]. ERIC was selected as widely accessible general 

database that provides free access to more than 1.2 million bibliographic records of 

educational journal articles and other education-related materials. The PME 

conference proceedings were selected because PME specialises in the exchange, 

promotion, and stimulation of scientific information and interdisciplinary research in 

the field of mathematics education (PME, n.d.). Both investigations spanned the years 

2000 to 2005. The aim of the ERIC and PME examinations was to identify the articles 

that bore reference to young children (birth to eight years), and the development of 

digital-numeracies or the use of new technologies. 

The two research questions were:   

1. What was the proportion and scope of articles on technology in the early years 

published in the ERIC database between 2000 and 2005?  

2. What was the proportion and scope of articles on technology in the early years 

published in the PME proceedings between 2000 and 2005?   

The first question was addressed by reporting on one aspect of a larger-scale study that 

examined the peer-reviewed literature on mathematics education and early childhood 

during the 6-year time span. The abstracts on the ERIC database on EBSCO host were 

the data sources for this study. Only articles from peer-reviewed journals were 

included because they (a) reflect the interests and values of mainstream research 

communities and (b) have a degree of quality control and credibility through the peer 

review process. In essence, the research approach consisted of identifying a data set of 
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articles for review from the ERIC database, limiting the data set to include only 

relevant articles, and ascertaining the representativeness of the literature through a 

thematic categorization of the articles. Categories were established that best 

represented the content theme of the articles. The age cohort investigated was also 

noted. 

The second question was addressed by reviewing the contents of the annual 

proceedings of the PME conferences between 2000 and 2005. The PME conference 

proceedings were included because they (a) represent a range of international 

interdisciplinary research and scientific information in the psychology of mathematics 

education, and (b) are peer reviewed, and hence of a certain calibre in relation to 

quality, research significance and interest. It should be noted that some PME papers 

were indexed in ERIC. The research approach consisted of examining the published 

PME conference proceedings to identify articles relating to technology and 

mathematics. The data set was then further investigated to ascertain the theme of the 

article, and the age cohort it addressed.  

RESULTS AND DISCUSSION   

What was the proportion and scope of articles on technology in the early years 

published in the ERIC database between 2000 and 2005?   

The ERIC search identified 208 articles relating to young children and mathematics 

which, due to multiple foci in some articles, resulted in 311 thematically-based codings. 

Only fourteen of the 311 codings (4.5%) focused on technology. The highest number 

of articles focused on mathematical concepts (36%) and the lowest number of articles 

focussed on problem solving (1.3%). The low proportion of articles on technology is 

surprising and a concern given the importance of technology in 21
st
 century 

mathematics. Each of the technology articles analysed related to young children’s use 

of computers, software, and information technology and communications during 

mathematical experiences within a school setting. No articles referred to 

digital-numeracies in the prior-to-school years. There were also no references found on 

new technological tools or devices to mathematical learning in the early childhood 

years.  

What was the proportion and scope of articles on technology in the early years 

published in the PME proceedings between 2000 and 2005?   

The total manuscripts published in PME proceedings between 2000 and 2005 was 

1857. Of this figure only 145 (7.8%) peer-reviewed items contained a reference to 

technology and mathematics. Technology papers were represented in a plenary lecture, 

research forums, discussion groups, working sessions, short orals, poster presentations 

and research reports (see Table 1). The majority of topics in manuscripts pertaining to 

mathematics and technology covered topics such as software, interactive whiteboards, 

CAS-based algebra systems, mathematical learning aided by computers, ICT (i.e., 

information and communication technologies) environments and tools, pedagogy, 

graphics calculators, attitudes, and gender issues. The technology-themed papers in the 
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PME proceedings addressed various age cohorts from upper primary school children 

through to pre-service teachers with one exception on young children. This was a 

poster presentation by Hoyos (2002) titled Computer-based mathematical games for 

preschool children. Thus, over a 6-year period only one PME paper (0.05%) had an 

early childhood focus.  

 PME 24 

2000 

PME 25 

2001 

PME 26 

2002 

PME 27 

2003 

PME 28 

2004 

PME 29 

2005 

Plenary lectures - - - - - 1 

Research 

forums 

- 1 - 1 - - 

Discussion 

groups 

- 1 - - 1 1 

Working 

sessions 

Not held 1 2 2 - - 

Short oral 

communications 

3 15 7 4 8 6 

Poster 

presentations 

1 7 6 7 5 5 

Research 

reports 

9 13 10 11 9 8 

TOTAL 13 38 25 25 23 21 

Table 1: Published presentations with a technology focus in PME proceedings from 

2000-2006. 

The analyses of ERIC and PME publications that address the early childhood years, 

mathematics and technology revealed significant limitations with the literature base. 

Proportionally, only 4.5% of ERIC articles and 0.05% of PME articles focused on this 

topic over a 6-year period. Additionally, only one PME paper focused specifically on 

the prior-to-school years, which are recognised as important for life outcomes. 

Moreover, none of the ERIC or the PME papers focused on new technologies. Given 

that today’s young children are digital natives, that is “native speakers of technology, 

fluent in the digital language of computers, video games, and the internet” (Prensky, 

2001), research is needed on the learning opportunities and demands of the breadth of 

technological tools and environments.  

These outcomes of the review of the ERIC and PME are not exceptional but appear to 

be representative of the orientations of professional groups over time with respect to 

the emphasis on technology and young children. For example, 10 years ago a 

technology-themed conference by the Mathematics Education Research Group of 

Australasia [MERGA] (Clarkson, 1986) published 80 manuscripts, of which seven 
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referenced mathematics and technology. However, none of these articles pertained to 

young children’s use of technology. Nearly a decade later, a review of research 

between 2000 and 2003 by the same professional community (Perry, Anthony & 

Diezmann, 2004) revealed an emphasis on technology in a chapter by Goos and 

Cretchley (2004). This chapter discussed the research on teaching and learning 

mathematics with computer-based technologies, and the role of computers in student 

learning. However, as with research published by ERIC and PME between 2000 and 

2005, there was scant attention to technology and young children. Only one study on 

young children and technology use (Lowrie, 2002) was identified in the MERGA 

review (Perry et al., 2003). Lowrie’s work investigated 6-year-old children’s capacity 

to interpret and construct 3D-like images in computer environments. However, no 

research was reported on children’s use of digital technologies in these early school 

years. Additionally, no research was reported on any type of technology use in the 

prior-to-school age range. 

CONCLUSION  

The review of literature published in peer-reviewed journals and PME conference 

proceedings identified research agendas investigating primary and secondary students’, 

and teachers’ engagement with computers, software, and within ICT environments. In 

the past few decades a shift in perceptions about young children’s learning and 

mathematics in a digital age has been witnessed. However, this shift is not mirrored in 

the literature. The review revealed a dearth of research on digital-numeracy 

engagement in the early years and a paucity of research on young children’s learning in 

the prior-to-school years. In our increasingly technological and information-based 

society, mathematical proficiency is necessary for productive participation in life and 

success in public and private ventures. Hence, research needs to provide adequate 

guidance on early childhood mathematics education in order to increase the likelihood 

of children’s success and to develop a numerate citizenry.  A substantial literature base 

would inform policy and practice and further validate the essential nature of early 

childhood mathematics and technology by providing convincing evidence about their 

plausible effects (Slavin, 2002). Additionally, such research would also contribute to 

the void of knowledge surrounding the impact of new technologies on the 

mathematical experiences of young children. 

As technology usage and numeracy demands increase in society, it is essential that all 

participants are considered with special attention given to the gatekeepers of our future 

– the children. In order to participate and thrive in today’s digital age and contribute to 

tomorrow’s future society, individuals need to become digitally-numerate. For 

example, considerable mathematical knowledge and technological knowledge are 

required to make informed decisions about the best mobile phone and plan. The ability 

to make informed decisions about mathematical situations determines whether or not 

these individuals have first or second class economic status in society. Thus, research 

on children’s numeracy learning and digital technologies is not only timely but 

necessary. Children are the pioneers of the future – what they learn, how they learn and 
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when they learn has 21
st
 digital-numeracy connotations - research agendas must 

acknowledge and respond to this actuality if we are to fulfil the responsibility of 

working towards equity for all. 
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TEACHING AND TEACHERS’ COMPETENCE WITH ICT IN 

MATHEMATICS IN A COMMUNITY OF INQUIRY 

Anne Berit Fuglestad 

Agder University College 

 

In the ICTML project the aim is to develop both mathematics teaching and the 

teachers’ competence with ICT and to perform research on all parts of the work. The 

research was situated in a social cultural framework. Teachers and didacticians 

worked together in learning communities inquiring into approaches for teaching and 

how computer tools can support inquiry in both teachers and pupils work. In this 

connection workshops at the university college played an important part. In this 

paper I will report from cases of workshops and how ideas for implementing teaching 

with ICT were developed and discussed in the learning community.  

BACKGROUND AND RATIONALE 

Implementing use of ICT (Information and Communication Technology) into 

mathematics teaching has been a slow process. In spite of huge efforts from the 

Norwegian educational authorities, the use of ICT tools is still rather weak in most 

schools (Erstad, Kløvstad, Kristiansen, & Søbye, 2005). A lot has been achieved with 

general use of computers, but less in specific subjects. Hardly any activity was 

reported in an evaluation of teachers’ implementation of the curriculum (Alseth, 

Breiteig, & Brekke, 2003). In my own experience, many teachers lack knowledge of 

how to utilise ICT tools in mathematics teaching and express need to see good 

examples and learn more about ways of using ICT. In the Norwegian curriculum plan, 

in effect from 2006, there is a demand to use “digital tools” in every school subject 

and specific demands are given in the plan for mathematics (KD, 2006).  

The project ICT and mathematics learning (ICTML) aims to meet the challenge of 

investigating how ICT tools can be utilised in school mathematics and in particular 

how ICT can support inquiry approaches in teaching and learning. ICTML is both a 

development and research project, where teachers and didacticians, i.e. researchers 

and doctoral students at the university college, work closely together. Furthermore, 

the project has a close collaboration with another project, Learning Communities in 

mathematics, (LCM) (Jaworski, 2005), with fundamentally a common theoretical 

framework. Both projects are supported by The Research Council of Norway 

I think of ICT tools in this context as computer software that is open and flexible not 

tied to specific topics or limited to pre-designed tasks. Such software provides ways 

of representing mathematical objects and relations and makes it possible to work on 

the representations. Thus ICT tools make it possible to investigate and experiment 

with mathematical ideas, discover patterns and relations and be stimulated in 
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mathematical thinking. In the project we mainly use spreadsheet, dynamic geometry 

and graph plotting program, and to some extent we use the Internet.  

The research presented in this paper is concerned with how teachers and didacticians 

work together in workshops in the project and how teaching ideas and teachers’ 

competence develop. What kind of teaching ideas were explored in the workshops? 

What kinds of questions were raised in the discussions? Can we find evidence of 

inquiry in the workshops which suggest learning is taking place? An important 

question is if we can see inquiry approaches to teaching emerging from the 

workshops.  

THEORETICAL FRAMEWORK 

The research and developmental work in the project is situated in a sociocultural 

framework with the ideas of learning community and inquiry as key concepts. The 

idea of learning community builds on and extends Wengers’ concept community of 

practice (Wenger, 1998) with three modes of belonging, engagement, imagination 

and critical alignment as key concepts (Jaworski, 2006). The participants engage in 

the project activities at the university college and in schools, and develop ideas 

through imagination and critically align themselves with the project community by 

discussion and testing out ideas, and developing understanding of key concepts and 

the goal for the project. Furthermore, to practice inquiry is key concept in developing 

the learning community into an inquiry community. 

Inquiry means to ask questions, investigate, acquire information, or search for 

knowledge. An attitude characterised by willingness to wonder, seek to understand by 

collaborating with others implies being active in dialogic inquiry (Wells, 2001). In 

the ICTML project as well as for LCM, an aim is for the participants in the projects 

to develop further into “inquiry as a way of being” which implies an attitude of 

asking questions, investigating and exploring – making inquiries into all levels in the 

project. This implies inquiry into mathematics, into mathematics learning and how 

mathematics can be represented and worked on with ICT tools. 

The way ICT is used and implemented in teaching can be characterised by viewing 

the ICT tool as an amplifier or a reorganiser (Pea, 1987; Dörfler, 1993). The amplifier 

metaphor means doing the same as before, more efficiently but not fundamentally 

changing the objects and tasks we work on, whereas seeing ICT tools as reorganisers 

implies fundamental changes in objects to work on, and the way we work. For 

example in using a graph plotting program as an amplifier the software produces 

quickly the graph as the end product, whereas seen as a reorganiser the function 

graph itself is seen as a new object which can be manipulated either directly or by 

setting parameters. Use of tools as reorganiser implies a move from doing towards 

planning with implies work on metalevel. In a spreadsheet for example, a model can 

be implemented and later used for investigation trying various numbers. The 

calculations are left to the spreadsheet whereas the user needs to plan the model and 

set up connections between cells. In order to fully utilise the potential of ICT tools 
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such reorganising should according to Dörfler (1993), be intended and encouraged. 

This implies new kind of tasks and approaches to mathematics. Reorganising of 

cognitive processes can be seen when learners interaction with technology 

qualitatively transform their thinking (Goos, Galbraith, Renshaw, & Geiger, 2003). 

The ICT tools are not passive neutral objects, but can according to Goos et al, re-

shape interactions between teachers, students and technology itself.  

The view of ICT tools as potential reorganisers has implications for how teaching is 

planned and carried through. There is need for new approaches to the work, new 

tasks and problems for the students to work on and perhaps new ways of working 

together. This can be achieved by an inquiry approach towards ICT tools, 

mathematics and how mathematics can be represented and worked on with the ICT 

tools. An inquiry attitude opens up possibility for teachers and didacticians not to 

know all the answers and to engage when new questions and problems arise. 

Teaching in this context is seen as a learning process; through inquiring into the 

various activities, mathematics and use of ICT, and as teaching is planned and carried 

through, this implies learning through the activities (Jaworski, 2006). This will be 

part of the development work and research in the project with the aim to meet the 

challenge of reorganising tasks, problems and approaches to teaching.  

THE ICTML PROJECT - KEY ACTIVITIES  

Four schools take part in the project and three of them also participate in the LCM 

project. At the start of the project in each school teachers worked together in school 

teams discussing teaching ideas, developing teaching and supporting each other.  

The ICTML project aims to support implementation of ICT in mathematics in 

schools guided by an inquiry approach to teaching and learning. By asking questions, 

investigating and experimenting with mathematical concepts and relations the learner, 

whether a student, a teacher or a didactician, develops knowledge and insight in the 

subject area. For this we need to use ICT tools that afford this kind of activity. 

Inquiry on all levels of the work is crucial to the project. In the LCM project, we 

inquire into mathematics, into teaching mathematics and how to develop mathematics 

teaching (Jaworski, 2005) – and additionally for ICTML particularly we inquire into 

the use of ICT tools connected to all these levels.  

The software itself does not create inquiry, but the way it is used, the kind of tasks 

and how they are presented can be crucial. For this reason design of tasks and 

teaching approaches are important. The design cycle can be seen as guideline for the 

work – to plan, act, observe, reflect and feedback to future planning (Jaworski, 2007). 

The teacher teams in the schools, perhaps together with a didactician, plan lessons 

and carry through the plan in their classes. The lessons can be observed by colleagues 

or didacticians and reflected over in school meetings. Feedback can be provided from 

this discussion or otherwise by looking at video recordings. Then another cycle can 

follow, revising the plan or following up by extending the teaching plan. 
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A team of 12 didacticians in the LCM and ICTML projects work together to develop 

the projects including planning for workshops and research. Two didacticians have 

their work dedicated to ICTML, and additionally an experienced teacher, Otto, is 

employed part time to support development in schools and contribute to the 

workshops. In addition several colleagues from the LCM project also takes part in the 

ICTML workshops and contribute to building the community. 

At the workshops for ICTML we usually start with a session in the computer lab. The 

workshop will often start with some short introduction to features of the software to 

work on, presenting tasks or teaching ideas as examples of use. Then teachers and 

didacticians work in pairs or small groups on suggested tasks, investigating further 

ideas or inventing new applications of the software. After a short break with some 

refreshments, results from the work in the computer lab are brought up on a large 

screen, presented and discussed together with further ideas and various ways of 

approaching the problems. In some cases we also have reports from teachers’ 

experiences and innovative work from their classes.  

The intention is that experiences or discussions in the workshops should initiate 

further work in the classes. We can see the workshops as providing both competence 

developments for the teachers on inquiry using ICT tools and as a start of planning 

for teaching. In the project we see the workshops as an important activity in 

stimulating further development and building the inquiry community.  

METHODOLOGY  

The research methodology is closely connected to development in the project with 

the design cycle giving a framework for the activity. The research can be 

characterised as developmental and have roots in various other recent research 

methodologies, like action research, design research, learning study, lesson study 

(Jaworski, 2004). As the design cycle provides a model for the development it could 

also be characterised as a developmental cycle. Teachers are included as partners in 

the research, taking part in discussions and to some extent engaging in observations 

in classrooms with their colleagues; noticing issues that arise in the work and 

reflecting on experiences in the classrooms. The intention is that research in schools 

take place in close cooperation between teachers and didacticians. 

The research is largely qualitative due to the nature of the development, aiming at 

describing characteristic features of inquiry approaches using ICT tools. Research is 

carried out on all levels in the project, including didacticians’ work conceptualising 

and planning for workshops and other initiatives. For this reason we use video or 

audio to record project meetings, activities in workshops, both in plenary and in some 

groups, and observations in classrooms and school meetings. In addition we write 

field notes and reflections from observations and school meetings and collect selected 

tasks and students’ work in computer files. 

The workshops are crucial to the developmental work and for building our 

community. The steps in a cycle of development are not limited to the schools. The 
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workshop activities can provide input for the start of the developmental cycle or can 

play a role in the reflection and feedback part of the cycle. Another possibility is to 

consider the work of didacticians in a cycle of activities, for example about planning 

and running the workshops, where the step carrying through is the workshop. 

Kennewell (2001) suggests concepts of affordances and constraints can be used to 

evaluate the implementation of ICT in teaching. The concept affordance was 

introduces by Gibson to characterise features of the objects, setting an environment 

which provides potential for actions (Greeno, 1994). Constraints can be seen as 

limitations, but are not just negative, they are rather complementary to affordances 

and equally necessary (Kennewell, 2001). Constraints are conditions and 

relationships that can provide structure and guidance. I regard these concepts helpful 

in analysing the ICTML work. 

Due to limitations of this paper I will the analysis how a few of the tasks and 

problems posed in two workshops challenged the participants, the outcome of the 

computer lab session and discussion of solutions in the plenary sessions.  

WORKSHOP ON ICT AND ALGEBRA  

In planning for the ICTML workshop in January 2006 the didacticians considered it 

valuable to follow up ideas from the previous LCM workshop which focussed on 

algebra. The close relation between the two projects, where most teachers take part in 

both, makes it possible to make such links from an LCM workshop to the next 

ICTML workshop. The LCM workshop dealt with functions, number patterns and 

how to express connections and the ICTML plan was to inquire into how ICT can 

support work on similar problems and what affordances and constraints ICT tools 

provide. 

At the start, Otto gave an introduction to how the spreadsheet can be utilised to make 

number patterns, making connections between cells, formatting the setup to make a 

suitable lay out and showing how formulae can be hidden and protected.  

As the participants started working 

on computers we observed various 

examples of tasks on the 

spreadsheet. Some made a number 

pattern, a number triangle, similar 

to the one Otto presented and others 

used the features of hiding and 

protecting formulae to make other 

applications.  

An example prepared to investigate 

number patterns was to reveal what 

formulae are hidden behind the 

columns. This heading gives the 
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task: “Formulae for geometrical figures. Can you find which one?” The spreadsheet 

shows three columns of numbers and the task for the students is to investigate what 

geometric measures are calculated in these columns. See the figure above. 

When the participants later were presented with this task in plenary session, one 

response was “it is a rectangle”. Another said “No, it is circumference.” A question 

arose: Could it be both? This was discussed, and provoked further inquiry: Is it 

possible that area and circumference of a rectangle, when calculated will give the 

same number? For what rectangles will this be possible? Could the same be the case 

for other figures? The discussion provoked new and more general questions that can 

be followed by further inquiry.  

Although using formulae in a spreadsheet has some relation to expressing algebraic 

connections, in principle, a spreadsheet is an arithmetic tool and not particularly 

suitable for symbolic manipulations (Dettori, Garuti, Lemut, & Netchitailova, 1995). 

The formulae uses cell references, not x to express variables. Two teachers wanted to 

challenge this and asked if it is possible to use x. During their discussion and with 

some input on naming cells they managed to present the same number triangle with 

figures and with x. In this case the teachers tried to inquire into the facilities of the 

spreadsheet, trying to work around the constraints of the software. 

MORE THAN ONE TOOL 

In the next ICTML workshop a graph plotting 

software was presented in the introduction. The 

challenge was to use more than one of the ICT 

tools available, spreadsheet, dynamic geometry or 

the graph plotter to investigate the tasks. One of 

the tasks presented was about making a 

rectangular shaped sports arena within an area 

determined by three roads forming a right angled 

triangle with the small sides 30 and 40 metre. The 

question is how to place the rectangle and find the 

maximum, with one side in the rectangle along the 

longest side or along the two short sides.  

Various solutions were presented. A pair of 

didacticians presented their solution in the graph 

plotter, indicating that they were quite surprised when 

they saw the solution. They plotted graphs for possible 

placements of the rectangle. The graphs of the 

corresponding areas indicate that the maxima are the 

same. Could this be true? They showed that they had to 

use another method for confirming their result. They 

also prepared a solution in Cabri and found the same 

result as indicated in the figure to the right. 
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The reflection and discussion connected to this task raised new inquiry. The task was 

not specifically asking for area, could we consider circumference? What if the 

triangular area is not right angled? Could we find the same for any triangle?  

WHAT HAVE WE LEARNED FROM THE WORKSHOPS? 

The workshops play a key role in developing the inquiry community related to the 

ICTML project. As teachers and didacticians engaged in investigations together in 

the computer lab, we came closer to each other and sometimes revealed our lack of 

knowledge of the ICT tools. This applies equally for didacticians and teachers. The 

experience is that this makes the roles balanced, and gives a relaxed atmosphere. It is 

allowed not always to know the answers, and questions that arise will lead to further 

inquiry. But within the project community we do have some expertise on ICT tools to 

provide support and suggest what further features to explore in the software. 

Although the teachers have some basic knowledge of spreadsheets they generally do 

lack knowledge of dynamic software and graph plotters.  

The experiences from the summary discussions looking at various solutions from the 

computer lab sessions confirm that inquiry took place during the lab session and 

analysis shows the nature of this inquiry. The reflections carried out in plenary raised 

further questions to explore and investigate. Reflections provoked questions of what 

the software can afford and what are the constraints of the software. There were cases 

of utilising the constraints to support investigations, like in the task of finding what 

geometric measures were calculated.  

On other occasions the constraints of the software challenged creativity and inquiry 

into the limitations of the software as in the triangle with symbolic expressions. 

Solving the same task with different ICT tools stimulated participants to look for 

connections, other alternative solutions to illuminate the tasks and develop tasks in 

various directions. In many cases questions were raised concerning how to extend or 

generalise the tasks from the computer lab, like looking at a more general triangle or 

look for other geometrical shapes that have the same measure of area and 

circumference. Other questions were about the software and what was possible. In 

this way inquiry into both affordances and constraints of the software took place.  

CONCLUSION 

The workshops, as expected, gave a huge stimulation and engagement for the work in 

the project and for building an inquiry community. Inquiry into ICT tools and their 

use for mathematics was evident in the discussion with further more general 

questions proposed and investigated.   
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STATISTICAL INFERENCE IN TEXTBOOKS: 

 MATHEMATICAL AND EVERYDAY CONTEXTS 

Israel García-Alonso and Juan Antonio García-Cruz 

Universidad de La Laguna (Spain) 

Various terms in the field of Statistical Inference and their presentation in secondary 

school text books are examined. A comparison of these terms in secondary school  

textbooks is carried out against their meanings in everyday use as well as in the 

mathematical context from two standard university textbooks from the field. We offer 

evidence that the meanings are not necessarily the same and that in some cases the 

definition which appears in the secondary school textbook is closer to its everyday 

use than to its mathematical one. Some implications for school textbook writers are 

derived. 

  

THEORETICAL FRAMEWORK 

Changes in mathematics secondary school curriculum, including statistics, have taken 

place in several Western European countries, such The Netherlands and Spain, since 

the late 70´s. Some statistical concepts which were previously introduced during the 

early years at the university level are now being taught at the secondary level, i.e. 

confidence intervals and hypothesis testing based on the normal distribution. Some 

recommendations have even been made to introduce basic concepts of statistical 

inference during earlier schooling (NCTM, 2000), but of course without the required 

sophistication and formalization seen at the university levels. 

Ample research into the difficulties and obstacles that students encounter when facing 

statistical inference have also appeared lately. Vallecillos and Batanero (1997) 

identified difficulties in the learning and understanding of statistical inference in the 

university context, especially with respect to the concepts of significance levels, 

parameters, and a statistic, among others, in addition to a general understanding of  

the logic involved in hypothesis testing. Moreno and Vallecillos (2002), researched 

the secondary school setting. Their study of 15 and 16 year-old students showed that 

students had misconceptions about statistical and carried incorrect inferences. They 

identify Representativeness as the key concept which presents the most difficulty 

(Kahnemann et al., 1982). Specifically, they point out that Representativeness is 

characterized by the belief that small samples must reproduce the essential 

characteristics of the population from which it has been taken. Students also find 

Hypothesis Testing to be difficult. Vallecillos (1999) indicates that students possess 

different ideas about exactly what a hypothesis test is. García-Alonso and García-

Cruz (2003) carried out a study using a sample of (n=50) students who sat for the 

University Entrance Examination. They concluded that most students (86%) were 

unable to completely carry out those problems in the exam which dealt with 

Statistical Inference, even though these exercises were no different than the typical 
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ones that were covered in their daily classes. Previous research into this subject 

confirms that an inherent difficulty is present in this topic based on the logical-

mathematical point of view. However our research focuses on the use of language 

and the effect that possible obstacles present could have on the students 

understanding of the topic. 

Language is an important tool in the construction of mathematical knowledge, and 

during lower secondary school, this language is no different than that used in an 

everyday context, except for some very specific terms. Higher levels of 

“technification” and abstraction are required in upper secondary school mathematics. 

Hence, a greater amount of specific terms are needed in their study, which is also the 

case for Statistical Inference. Shuard & Rothery (1984) indicated that two contexts 

are present in the mathematics classroom: an everyday context and a mathematical 

context. An everyday context refers to carrying out typical communication found in 

day to day settings while a mathematical context only deals with mathematical 

communication. These authors categorize the terms which appear in the mathematics 

classroom according to these groups: (1) those terms which have the same meaning in 

both contexts; (2) those terms whose meaning changes from one context or the other, 

and (3) those terms which are only seen in a mathematical context. Students should 

not have any problems understanding the terms found in category (1). On the other 

hand, all terms found in category (3) must be defined since they are not part of a 

students’ vocabulary.  The terms found in category 2 may be difficult for students to 

understand. The role of textbooks was included in Discussion Group 7 at the 30
th
 

PME Conference. The need to carry out research on European textbooks was 

identified, and one of the specific areas covered the need to understand how 

textbooks are prepared and used during the learning and teaching process (Pepin, 

Grevholm & Straesser, 2006). 

Our research into textbooks is based on the “a priori” approach. Thus we review the 

terms related with statistical inference and analyze them within their context. They 

are then classified according to the categories given by Shuard & Rothery (1984) 

We wish to address the following questions: How are statistical inference terms 

presented in upper secondary school textbooks? Are there differences between the 

mathematical meaning of these terms and the ones from everyday use? Are the 

definitions in the textbooks correct? 

OBJECTIVES AND METHODOLOGY 

The are two main objectives in our research: 

1. To determine if the meanings of the terms found in Statistical Inference is 

the same in both everyday and mathematical contexts. 

2. To compare these meanings with those developed in secondary school 

textbooks. 
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Questionnaires were administered to a group of 37 secondary school teachers who 

were responsible for teaching the last year of an upper secondary school mathematics 

course. Teachers were asked to identify the publisher of the textbook they were using.  

The questionnaire also revealed a very interesting fact. Approximately 30 teachers in 

the survey used the textbook as a means to recall and/or review the statistical 

concepts that their students would be working with in class. This decision emphasizes 

the importance of the textbook as a key element in teaching training. 

We chose the four most popular textbooks according to the survey. The number in 

parentheses represents amount of times this book was used among the four in the 

study. The four publishers are: Publisher 1 (P1): Anaya (n = 24); Publisher 2 (P2): 

SM (n = 6);  Publisher 3 (P3): Santillana (n = 4); Publisher 4 (P4): Edelvives (n = 2). 

We then selected all the terms related with Statistical Inference in each publisher´s 

version. The next step was to analyze the meaning of each term in everyday use as 

well as in the mathematical context. The Diccionario de la Real Academia de la 

Lengua Española (hereafter Diccionario) was consulted for the definitions of the 

terms in everyday context. Two university textbooks were used for the mathematics 

definitions: ME = Mendenhall (1982) and MO = Moore (2005). 

Everyday context: The Spanish language is regulated by the Real Academia de la 

Lengua. The mission of the Real Academia is to collect all terms and new versions of 

their meanings which have been introduced into the language with the passing of time. 

The Diccionario is an important resource when studying the meanings of terms found 

and used in everyday language. The dictionary also makes a reference to technical 

terms, “to introduce those words which originate from distinct fields of knowledge 

and also from professional activities whose current use (...) has exceeded its original 

meaning in another setting, and consequently has extended its use, either frequently 

or occasionally from either common language or in a cultural context”.   

Mathematical context: The university textbooks are used to identify the mathematical  

context of the terms, since they are written with the understood mission to convey the 

definitions of these terms and technical concepts to students. As mentioned 

previously,  Mendenhall (1982) and Moore (2005) were used in our study. 

Two  definitions for each term were taken from the Diccionario. The first definition 

is the one which appears first in the Diccionario. The second definition is the one 

which is closest to the mathematical context. The definitions from the Diccionario, 

the University textbooks and the secondary school textbooks which appear in this 

paper have been translated into English from the Spanish versions. The English 

translation of the statistical inference terms are provided to guide the reader through 

our research methodology. 

Now that the meanings of the terms from both the everyday and mathematical 

contexts are known, the next step is to categorize them according to the criteria given 
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in Shuard & Rothery (1984). If the definitions given in the Diccionario and the 

university textbooks are the same or quite similar, then the term is placed in the first 

category “same meaning in both contexts”.  The third category “specific meaning in 

mathematical context” is used for those terms that are only found in university 

textbooks. Category 2 “different meanings in both contexts” is the remaining 

category and is used for those terms whose meanings are not the same. The final 

stage of our research analyzed the treatment of these terms in the textbooks from the 

four publishers.   

 

RESULTS AND DISCUSSION 

27 terms related to statistical inference were analyzed. Each term was grouped into its 

corresponding category.  Each term was analyzed according to the procedure 

described in the previous section.  Some examples by category follow. 

Category 1: Same meaning in both contexts 

Four terms were found to belong to this category: Statistics, Population, Individual 

and Sample size. We use the Population term as an example of how we carried out 

our study: 

Term:  POPULATION 

Diccionario University Textbooks 

1. Act and effect of populating. 

2. Set of individuals or things subject to a 

statistical evaluation by means of   

sampling. 

ME.- Set of all measurements of interest to 

the person who obtains the sample. 

MO.- An entire group of individuals of which 

we want to know certain information about is 

called a population. 

PUBLISHERS 

P1.- “A population or universe is the set of all individuals in our study”. 

P2.- “is the set of all elements that possess a specific characteristic. Populations are 

generally assumed to be very large.” 

P3.- “when a statistical study refers to a group, set or collection of elements, this  

collection is called the population.” 

P4.- “the homogeneous group of people, animals or things on which a study is to take 

place”. 

A comparison of the four definitions reveals how the P4 version requires 

homogeneity within the group. This condition is not necessary, since the purpose of 

the statistical study could be to study a homogeneous characteristic within the 

population, not a homogeneous group. Thus, we consider the inclusion of 

homogeneity in the definition to be misleading, and possibly causing confusion to the 

student. 
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Category 2: Different meanings in both contexts 

The following terms are included in this category: Calculated Mean, Sample, 

Estimation, Infer, Distribution, Probability, Representative, Risk. 

Term:  SAMPLE 

Diccionario University Textbooks 

1. Part of a product or merchandise 

which allows the quality of the 

goods to be known. 

2. Part or chosen portion of a set by 

methods which allow it to be 

considered representative of it.  

ME.- A sample is a subset of selected 

measurements from the population of interest. 

MO.- A sample is that part of the population 

that we are currently studying with the  

objective of obtaining information. 

PUBLISHERS 

P1.- “a subset drawn from the population. A study of the sample helps to infer  

characteristics of the entire population”. “However, if the sample is incorrectly chosen,  

(it is not representative)…” 

P2.- “a subset of the population”. If “a study is going to be reliable, it is critical that the 

selection of the sample be correct, so that it is clearly representative of the  population”. 

P3.- “part of the population, carefully selected, which is subject to scientific observation 

as a representation of the same population. Its purpose is to obtain valid results for the 

entire population”. In addition, “a sample is considered valid when it fulfils the 

definition of  (…) being representative” 

P4.- “Subset of the population”. “An appropriate selection” should be made. 

This term has equivalent definitions in both university textbooks. However, the 

definitions in the Diccionario emphasize how the subset must be representative of the 

complete set. This requirement does not appear in the university textbooks.  

Exactly what is representative? Two definitions are found in the Diccionario: 

1. To recall something with words or figures that the imagination remembers. 

2. To be the image or symbol of something, or to imitate it perfectly. 

According to this definition, if a sample is said to be representative, it is indicating 

that the sample must “perfectly imitate” or “be an image” of the population. These 

definitions lead to an incorrect idea of the term, and lead to Representativeness, 

described in Kahneman et al. (1982). Representativeness is defined when the student 

expects that small samples reflect all of the population properties. We know that its 

similarity with the population does not validate our sample, but instead its selection 

method. 

It is also important to remark how the Diccionario indicates the need for the sample 

to be representative. This fact shows how an incorrect meaning in the everyday 

context applied to mathematics can produce an incorrect understanding of this 

technical term, and create barriers for students in their understanding. 
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Category 3: Specific meaning in mathematical context  

Category 3 contains the most terms of all the groups. The list includes: Statistic, 

Parameter, Random sampling, Sample mean, Population Mean, Confidence level, 

Standard deviation, Significance level, Inductive statistics,  hypothetical-deductive 

statistic, margin of  error, Normal, Bias, Efficiency, Sample proportion.. 

Term:  STATISTIC 

Diccionario University Textbooks 

1.Belonging to or related 

to statistics. 

2.Person who exercises 

the statistics profession. 

MO. A statistic is a number that can be calculated based on 

sample data without needing to use any unknown parameter. 

We typically usually use the term statistic to estimate an 

unknown parameter. 

PUBLISHERS 

P1. & P4.- Undefined. 

P2.- “a numerical value that describes a characteristic of the sample”. 

P3.- “[values or measures] that characterize a sample”. 

The mathematical meaning of the term Statistic is not given in the Diccionario.  

Therefore it is included in the third category. When statistic is defined, it is done with 

references to population parameters instead of statistics. Given its importance in this 

concept, (statistical inference begins with this point), it is significant that some 

publishers exclude its definition, and that others introduce it later on in the text. 

Term:  CONFIDENCE LEVEL 

Diccionario University Textbooks 

Undefined 

ME.- The probability that a confidence interval will 

include the estimated parameter. 

MO. A “C” confidence level represents the 

probability that the interval will contain the true value 

of a parameter in repeated sampling. 

PUBLISHERS 

P1.- “Starting with a sample of size n we can estimate the value of a parameter of the 

population (…) Resulting in an interval in which we are confident that this parameter 

will be included. (…) Finding the probability that such a thing occurs. This probability is 

called the confidence level”. 

P2.- “the probability that an estimator for an interval covers the true value of the 

parameter which is being estimated. It is normally represented by 1 - α.” 

P3.- “the level of confidence that we have that the population mean will belong to the 

interval is  1-α”. 

P4.-“Calculate the two values where we expect that the searched-for parameter will be 

found with a certain confidence level, which we will call 1-α, where α is the pre-

determined risk level”. 
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Note that publishers P2 and P3 use the probability that the estimator is included in the 

interval, but later on introduce new terminology to complete the definition, namely 

the value: 1-α. The value of α has not yet been defined. Publisher P4, however, states 

that α is the risk level (significance level). In other words, the definition of one term 

is given using another term which has not been previously defined. 

Publishers P2 and P3 present an example which barely explains the meaning of a 

confidence level. None of the proposed activities emphasize this concept. Publisher 

P1 offers comments about the meaning of the concept, but Publisher P4 does not even 

offer an example which would help explain the meaning of a confidence level.  

Recall that confidence level is a new term for secondary school students. A clear 

understanding of its meaning is not easy, since the concept of probability is dropped 

and instead levels are introduced, where the meaning of confidence appears opposite 

to the meaning of significance level, which represents an α ?error. This set of concepts 

and their meanings are not properly separated nor explained in a convenient manner, 

thereby complicating their understanding by students. 

 

CONCLUSIONS 

Our research includes the selection of specific terms related to confidence intervals 

and their classification according to three categories, given their meaning in two 

different contexts: everyday and mathematical.  

The first category includes the terms found in the textbooks with the same meaning in  

both contexts. Most of the publishers provided the correct definition of the terms, 

although there are some examples where the definition has been significantly altered. 

The second category is made up of terms with different meanings in both contexts. 

Hence, it is possible that a student can incorrectly learn the mathematical concept. 

We observed that most publishers use the everyday definition of the technical term, 

not the mathematical one. 

The third category is made up of terms only found in the mathematical context.  

Some of the textbooks do not use the correct definitions. We also found examples 

where terms were introduced and never referred to later on in the textbook. The 

presentation of the material in this way can be confusing for students, or indicates 

that the textbook is inconsistent, since it is not continuously using terms which were 

introduced at a given moment. 

Overall we have noticed how some definitions that appear in the textbooks do not 

correspond to their mathematical meaning but instead to the one in their everyday use.  

There are times when the definition of the term is incorrect, or it does not emphasize 

the key elements in the definition. Textbooks which include these errors are of great 

concern to students and teachers if we take into account that most professors use 

these textbooks to review the concepts related to Statistical Inference, and then 
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prepare their classes, as confirmed in the questionnaire we administered at the 

beginning of our study. 

Incorrect definitions of technical terms, or their complete absence in the textbook has 

been confirmed in all four publishers. Sometime the textbook altered the meaning of 

the term. These differences in the definitions are not easily found, and the errors 

would be impossible to detect for students or anyone without a previous knowledge 

of statistics. We have confirmed that the terms found in the textbooks at this level are, 

for the most part, technical, and therefore the language used in their presentation 

should be consistent with their content.  It is desirable that the definitions of these 

technical terms be correctly defined, leaving no doubt about their meaning. 

In our opinion the results of our research are useful for writers of textbooks, leading 

to more coherent efforts by the writers, and offering a final product which is an 

important tool for both teacher and student alike. 
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PRE-SERVICE ELEMENTARY SCHOOL TEACHERS’ 

EXPERENCES WITH THE PROCESS OF CREATING PROOFS 

Soheila Gholamazad 

Ministry of Education, Iran 

 

This research examines students’ participation in the process of creating proofs. In 

this study I adopt the communicational approach to cognition based on the work of 

Sfard, according to which thinking is a special case of activity of communication. 

Participants in this study are pre-service elementary school teachers. I encouraged 

students to write down the dialogue that they have with themselves while they are 

thinking and trying to create a proof. The results show the method of proving through 

writing a dialogue would be practical heuristic for involving students in the process of 

creating a mathematical proof. 

Proof is an important part of not only mathematical practice, but also of mathematical 

learning and teaching (Hanna, 1989). However, research has repeatedly shown that 

proofs and the ability to understand and generate proofs is difficult for students in 

general (Hoyles, 1997) and for pre-service elementary school teachers in particular 

(Gholamazad, Liljedahl, and Zazkis, 2003; Martin & Harel, 1989; Simon & Blume, 

1996). The main problem with many of the students is that they usually do not see the 

necessity of presenting an argument for a given statement (Harel, 1998).  Indeed, they 

do not really understand what they are expected to do and why. They, mostly, consider 

some confirming examples as a proof (Gholamazad, et al, 2003; Martin & Harel, 

1989).  

Students usually work with the final product of a proving process. However, "the final 

proof will hardly reflect the process of generation" (Heinze, Reiss, and GroB, 2006, p. 

275). The question is how can we encourage pre-service elementary school teachers to 

be involved in the process of creating proofs? And, what are the factors that impede 

pre-service elementary school teachers' participation in the process of creating proofs? 

In searching for a method for teaching proof, I examine the engagement in writing a 

dialogue as a means towards creating proofs. 

THEORETICAL PERSPECTIVE 

In this study, I adopt the communicational approach to cognition, based on the 

learning-as-participation metaphor, and conceptualisation of thinking as an instance of 

communication (Sfard, 2001). In this approach, learning mathematics is an initiation to 

a certain type of discourse: literate mathematical discourse (Sfard and Cole, 2002). 

Literate mathematical discourses as purposeful goals of teaching and schooling  are 

distinguished from other types of communication through four criteria: (1) their special 

vocabulary, (2) their special mediating tools, (3) their discursive routines, and (4) their 
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particular endorsed narratives (Sfard, 2002; Ben-Yehuda, Lavy, Linchevski, and Sfard, 

2005).   

The communicational approach is deeply rooted in Vygotskian theory. In this approach 

priority is given to communicative public speech rather than inner private speech 

(Vygotsky, 1987). Therefore, better understanding of public discourse deepens our 

insight into a dialogue that one leads with oneself.  

Considering the idea that thinking is a kind of communication that one has with oneself 

(Sfard, 2001), in this research, I encouraged students to write down the dialogue that 

they have with themselves while they were thinking to understand or create a proof. 

The main purpose of this kind of task was to satisfy the convincing aspect of a student 

generated proof, not only for the writer but also for the third person that might read it. 

Therefore, such dialogue should answer all the possible questions related to 

mathematical properties or arguments used in a proof. Writing down the dialogue may 

provide students an opportunity to reflect on their thinking process and to organize it in 

a convincing way. In this perspective, the dialogue can be considered as an 

intermediate stage between having an overview of a proof and writing a formal 

mathematical proof.  

STUDY 

Participants  

Participants in this study were 83 pre-service elementary school teachers enrolled in 

the course “Principles of Mathematics for Teachers”, which is a core course in a 

teacher education program. The goal of this course is to promote the understanding of 

mathematical concepts and relationships. It concentrates on investigating why we do 

something in mathematical activities rather than how we do it.  

Proof as a dialogue  

To introduce the idea of writing proof through a dialogue the participants received a 

sample of a dialogue. The sample dialogue was between two imaginary personas: 

EXPLORER, the one who tries to prove the proposition, and WHYer, the one who asks 

all the possible questions related to the process of the proof. The main idea of 

designing these two personas was to consider two aspects of the character of an 

individual who is proving a mathematical statement.  

The sample dialogue addresses the proposition: ‘The difference of an odd number and 

an even number is an odd number’. The main purpose of giving the sample dialogue is 

to show the students how many reasonable questions the proof of such simple 

statement might bring up. Because, in my opinion, the main problem with naïve 

students’ self-dialogue is that many of the reasonable questions in the process of 

proving are not usually ‘a question’ for them. Hence, I wanted to encourage them to 

pose questions. I believed writing dialogue would also cultivate the art of question 

posing, and after a while that would become a part of the culture of their mathematical 

thinking.  
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The participants in this study were exposed to several tasks of creating dialogue for 

either proving a statement or expanding a given proof for number theory propositions. 

Based on the purpose of the tasks, they did them in a group or individually. Giving the 

page limitation of this report, I focus on one of the tasks.  

The task 

In the given task the participants were asked to write a dialogue towards a proof for the 

following proposition:  

Let a, b, and c be whole numbers. If a and c are relatively prime, and b and c are 

relatively prime then ab and c are relatively prime. 

The students were asked to perform this task individually. This task was administered 

after they completed the section of number theory in the course. They had access to 

their textbooks and other knowledge sources, and the time for completing the task was 

not limited.  

Results and analysis: students’ dialogues 

The source of data for the study is the students’ written dialogue for proving the given 

proposition. A reasonable and convincing dialogue was provided by 35 of the students 

(almost 40%). In these dialogues, students presented convincing arguments by 

describing related vocabulary, choosing appropriate representations as mediators, 

manipulating them correctly by implementing mathematical routines, and interpreting 

the results by supporting them with appropriate endorsed narratives.  

In this report I have organized all the dialogues created by students according to the 

communicational framework. For the analysis I examined the four above-mentioned 

components of a literate mathematical discourse in students' arguments.  

The mathematical vocabulary:  The data revealed that all the participants began their 

dialogue by recalling the definition of the words related to the proposition such as 

‘relatively prime numbers’. The majority of students, however, saw the necessity to 

situate the concept of relatively prime numbers in relation with others such as whole 

number, prime number, factor, and the greatest common factor. The following excerpt 

is part of a dialogue.  

WHYer: Could you tell me what is a whole number? 

EXPLORER: Sure, a whole number is a member of the set of positive integers and zero (0, 
1, 2, 3, 4, and go on). Integers are defined as the set of numbers consisting 
of the counting numbers (that is, 1, 2, 3, 4, 5, …), their opposites (that is 
negative numbers, -1, -2, -3, …), and zero. 

WHYer: And what is prime number? Can you show some examples of prime numbers? 

EXPLORER: Some examples of prime numbers are 1, 3, 5, 7, and 11. A prime number is 
a number that cannot be divided evenly by any other number except itself 
and the number one. 

WHYer: How many of these numbers you might have? 

EXPLORER: Infinitely many. 
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WHYer: Fine. But what is a relatively prime number? 

EXPLORER: Two integers are relatively prime if there is no integer greater than one that 
divides them both (which means that their greatest common divisor is one). 

WHYer: OK. What is greatest common divisor? 

EXPLORER: The greatest common divisor is the largest factor two numbers have in 
common. 

Recalling all the definitions in the above excerpt shows that the writer did not take any 

one of the mathematical words for granted. In this situation, a written dialogue 

provides the students with a big picture of related vocabulary for further use in their 

argument. It also offers the researcher access to students’ possible misuse or 

misunderstanding of the concepts. As can be seen in this dialogue, the student 

incorrectly considered 1 as a prime number, and excluded 2 from the set of prime 

numbers.  

Mediators and routines: For presenting their arguments, students had recourse to 

different types of visual means that serve as communication mediators, such as 

numbers, verbal explanation, algebraic representation, and set theory symbols and 

diagrams. In accordance with the chosen mediator they implemented different form of 

routines. 

The common aspect of all the dialogues was empirical verification of the proposition. 

Indeed, we can say that numerical example is the most common type of mediators for 

pre-service elementary teachers to communicate their ideas. Research repeatedly 

showed the high reliance of students on empirical verification as an acceptable proof 

(Gholamazad, et al, 2003; Martin & Harel, 1989). The results of this study, however, 

showed that only 10% of the students finished their argument in this step. 

Here, I would like to distinguish between two different types of examples that students 

presented in their dialogue: numerical example that just verifies the proposition and a 

generic example. By generic example, I mean the example that tacitly expresses the 

process of the proof. Indeed, in such cases students compensate their lack of access to 

appropriate mediator by recourse to numbers. For example: 

Whyer: Can you give me an example? 

Explorer: Sure, let’s use the numbers 15, 16, and 7. a being 15, b being 16, and c being 7. 
15 is thus relatively prime with 7 and 16 is relatively prime to 7. 

Whyer: How is 15 and 16 relatively prime to 7? 

Explorer: When breaking down 15 the factors are 3 and 5, and when breaking down 16 
they are 2 4 . These numbers are not equal to the breakdown of 7 which is 7. 

Whyer: I understand! But when a and b multiplied to be ab then how does this work? 

Explorer: Well when 15 and 16 are multiplied together it equals 240 but the prime 
factorisation still remains 2 4

×3 and 5. Thus the prime factors will never 
equal to 7. 

Whyer: Why does this always happen again? 

Explorer: This is the fundamental theorem of arithmetic.  
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Whyer: Does this prove your statement? 

Explorer: Indeed, it does! You’ll remember that I stated that a and c do not have any 
common prime factors and b and c do not have any common prime factors. 
Therefore when a and b are multiplied and become ab their prime factors 
will not be the same as c.  

As can be seen, the student drew a conclusion by choosing random relatively prime 

numbers and applying the Fundamental Theorem of Arithmetic to their prime 

decompositions. This argument, even though it is not a mathematical proof, illustrates 

the logic that the student has in her reasoning.   

Another example of logical derivation that does not rely on mathematical formalism 

can be seen in responses of 9% of the participants who used the verbal explanation as a 

mediator and used their common sense as a routine for administering the argument. For 

example: 

Sara 2: So none of the factors that multiply together to form a are the same as any of the 
numbers that multiply together to form c.  

Sara 1: that’s correct! 

Sara 2: and none of the factors that multiply to yield b are the same as the factors that 
multiply together to create c. 

Sara 1: exactly! 

Sara 2: So how does that prove that ab is relatively prime to c? 

Sara 1: ab are combined factors of a and b because the factors of the two numbers are 
combined when they multiply. 10×5 = 50 = 5×2×5×1. 

Sara 2: What does that tell me? 

Sara 1: Since factors of ‘a’ and the factors of ‘b’ have no overlap with the factors of c, this 
is true for the factors of ab. Therefore ab is relatively prime to c.  

The majority of the participants, following empirical verification, tried to use a kind of 

representation in their argument, such as algebraic notations, set theory symbols, or 

diagrams. Around 65% of participants used algebraic representation for prime 

decomposition of a whole number. However, at times, their poor background in using 

algebraic notations and algebraic routine procedures, led almost half of them to a 

superficial presentation. For example, in the following dialogue the student, after an 

empirical verification, continues: 

Aye: So, are we done? 

Myself: No, because we have not proven the proposition yet, we have just seen that one 
example works. To prove the example, we have to go back to using letters, 
which represent all possibilities. 

Aye: sounds good. 

Myself: To start, we will express a, b, and c as a product of their primes such that a=p1,p2
…pm, b=q1,q2…qn and c=r1,r2…rq. Therefore ab=p1q1,p2,q2…pmqn. 
Since the Fundamental Theorem of Arithmetic  states that each composite 
number can be expressed as the product of primes in exactly one way and 
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we know that ab=pmqn and c=rq, we can state that ab and c are relatively 
prime. 

Aye: And that was all we needed for proof? 

Myself: Yes!  

Endorsed narrative: The endorsed narratives are the production of discursive activities 

and mathematical routines (Ben-Yehuda et al, 2005). In a deductive reasoning all the 

claims should result from legitimate routines or be supported by the narratives, such as 

definitions, postulates, and theorems that are accepted by the mathematical community 

as true. Therefore, the process of proving can be also considered as producing a chain 

of endorsed narratives that leads the argument to the desired conclusion.  

The Fundamental Theorem of Arithmetic is an endorsed narrative that can support and 

guide the whole process of a proof for the given task. In several dialogues, however, it 

was observed that students made a claim about the prime factorisation of whole 

numbers without referring to this theorem. The following excerpt is an example of 

such presentations. 

Me: Right. Let a, b, and c be expressed as their product of primes as follows: 

  a = p 1p 2…p t         b = q 1q 2…q f        c = r 1r 2…r y  

My head: What does this tell us? 

Me: This shows that a and c are relatively prime because their products of primes do not 
have any common primes. It also shows that b and c are relatively prime 
because they too do not have any common primes. 

My head: But then how do we know that ab and c are relatively prime? 

Me: We know this because ab = (p 1p 2…p t )(q 1q 2…q f ) and these do not have any 
common primes with c, (r 1r 2…r y ). Therefore ab and c are also relatively 
prime because their greatest common factor is 1. 

My head: So can we now say that we proved the statement? 

Me: Yes, by expressing a, b, and c as their products of primes we have shown that if a, b, 
and c are whole numbers and a and c are relatively prime and b and c are 
relatively prime, then ab and c are also relatively prime because their 
greatest common factor is 1.  

In this dialogue, the students made the conclusion simply based on the appearance of 

the selected letters for prime factorisation of a, b, and c.             

DISCUSSION AND CONCLUSION 

In this report, I have introduced the notion of dialogue as a tool for involving 

pre-service elementary school teachers in the process of creating a proof. Here two 

legitimate questions might emerge: What kind of dialogue? How could the dialogue be 

helpful? As I mentioned above, by dialogue I mean a self-dialogue or a conversation 

that a person has with oneself while s/he is thinking. Therefore, writing the dialogue 

provides students with an opportunity to reflect on their thinking process, to correct the 

mistakes and fill the gaps in their argument, and to organize it in the form of a 

convincing mathematical discourse. It also provides a good source of students’ 
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discourses for educators and researchers. Indeed, it offers an opportunity for educators 

to examine students’ arguments, and by posing more appropriate questions lead the 

students to refine and strengthen their arguments. 

The benefit of writing dialogue is that it encourages students to ‘explain why and how 

to do’ instead of just doing. This is what Schoenfeld (1994) calls mathematical culture, 

where discourse, thinking things through, and convincing are important parts of 

students engagement with mathematics. He believes in such environment “proofs 

would be seen as a natural part of their mathematics (why is this true? It’s because…) 

rather than as an artificial imposition” (p. 76).  

Having clear understanding of the mathematical vocabulary and using it appropriately 

is very important component of a mathematical discourse. The study demonstrates that 

explaining mathematical words is a common part of the dialogues. The majority of the 

students have posed questions regarding the explanation and application of words or 

symbols and they answered them. That is to say, writing dialogue led them to make all 

the related definitions available and engaged them in the process of the proof. 

One of the common questions in all the dialogues was (in different phrases): “Does a 

numerical example prove the proposition?” 90% of the participants answered ‘no’, 

which is a promising result of the study. They continued their argument in general by 

using different form of mediators. The result showed writing dialogue was useful for 

changing students’ attitude toward empirical proof that was a cognitive obstacle in 

their understanding of proof. Indeed, it provided them with a chance to face the conflict 

of whether some limited number of examples can guarantee the validity of a statement 

in general.  

However, poor access to appropriate mediators, especially in the form of algebraic 

representation and poor skill in discursive routines, are still the main challenge for 

pre-service elementary school teachers to present their argument mathematically. The 

results revealed that the main difficulty that students experienced in creating a proof is 

that they do not know how to communicate their idea mathematically. Nevertheless, I 

would like to acknowledge students’ ability to implement, and in some cases even 

invent, different kinds of mediators to present their idea.  

Indeed, the paradigm of dialogues provided pre-service elementary school teachers 

with a flexible environment where they could cultivate their reasoning in the form of a 

literate mathematical discourse. Also, having a close look at students discourses, 

presented in the form of a self-dialogue, under the lens of communicational framework 

provided the researcher with indicators for recognising the factors that impeded 

students in the process of creating a proof.  

This study is a part of an ongoing research on using dialogue for teaching proof. Based 

on the results, I believe that creating a dialogue is a helpful intermediate stage towards 

writing a proof. Further research will explore additional implementation of this 

method.  
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INTERNATIONAL SURVEY OF HIGH SCHOOL STUDENTS’ 

UNDERSTANDING OF KEY CONCEPTS OF LINEARITY  

Carole Greenes, Kyung Yoon Chang and David Ben-Chaim 

Boston University, USA / Konkuk University, Korea / University of Hifa, Israel 

 

Developing students’ understanding of key concepts of linearity and their various 

representations is a major focus of first courses in algebra for secondary school 

students. Students’ difficulties with problems involving linearity on Massachusetts 

high stakes tests motivated an in-depth study of the nature and causes of these 

difficulties. The study population expanded to include more than 4000 students in 

Algebra I in the USA, Korea and Israel. A written test and clinical interviews were 

designed and administered to the population. Clinical interviews were conducted to 

gain greater insight into solution methods to selected test items. The study was an 

activity of the Focus on Mathematics project funded by the National Science 

Foundation (NSF/ EHR-0314692). 

INTRODUCTION 

Several attributes of a line, such as slope, y-intercept and equation of a line are 

considered to be core concepts in the secondary school mathematics curriculum. They 

are understood to have simple internal structure and they are taken to be the 

“foundations” out of which more complex concepts such as function are developed, or 

related to, as in the case of the relationship between the concepts of derivative and 

slope. The NCTM Principles and Standards for School Mathematics state that 

“Students should be able to use equations of the form y = mx + b to represent linear 

relationships, and they should know how the values of the slope (m) and the y-intercept 

(b) affect the line.” (NCTM, 2000, p.226-7). The study described here demonstrates 

that we are far from achieving this goal, not only in the U.S. but also internationally. 

MOTIVATION FOR THE STUDY 

Increasingly, school districts throughout the United States are calling for algebra for all 

secondary students (NCTM, 2000; National Mathematics Advisory Panel: 

Strengthening Math Education Through Research, 2006). Concomitant with the call 

are articles reporting huge student failure rates in Algebra I. This national problem was 

particularly noticeable in Massachusetts with secondary school students’ poor 

performance on linearity items on the Massachusetts Comprehensive Assessment 

System (MCAS) tests (Massachusetts DOE, 2000 – 2006). Identifying students’ 

difficulties with linearity concepts and skills and developing strategies for addressing 

those difficulties was the work of the Curriculum Review Committee (CRC), a 

committee of the Focus on Mathematics Project.  In 2004, the CRC consisted of 

mathematics and mathematics education faculty from Boston University and 

mathematics curriculum coordinators from five school districts in the Boston 
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metropolitan area. In 2005, the committee was joined by mathematics education 

faculty from Korea and Israel. 

To begin their work, the CRC “unpacked” each MCAS item dealing with linearity to 

identify the type of displays and formats that students had to interpret, and the 

mathematical concepts, skills and reasoning methods students were required to bring to 

bear to solve the problems. The CRC also speculated about reasons for students’ 

difficulties. To verify conjectures about the nature of student difficulties, the CRC 

designed, conducted and video-taped interviews of students solving selected MCAS 

problems and describing their thinking. Interviews were analysed and “real” 

difficulties were compared with the CRC’s speculations. The CRC was on target about 

60% of the time; many student difficulties were totally unsuspected. To gain more 

information about the difficulties, the CRC developed a written assessment instrument 

as well as a clinical interview to probe students’ difficulties with selected items.  

TEST INSTRUMENTS 

To be successful with algebra, expectations are that students understand functions both 

as input/output rules and know how they are represented in graphs and tables; 

understand that linear functions are characterized by constant slope, and can plot 

graphs of linear functions given in the general ax + by = c form; can relate the slope of 

a linear function to the speed of an object represented in a time vs. distance graph; and 

understand the significance of the sign of the slope of a linear function in the previous 

context. It was this set of “understandings” that formed the basis for the design of the 

Mini-Assessment Test (MAT).  

The Mini-Assessment Test (MAT) consists of seven items that use the same formats 

(essay, short answer, and multiple-choice) as the MCAS tests. For each item In the 

MAT, scoring directions were developed to take note of specific types of errors.  

Essay Response (1 item): Given coordinates of a point and the equation of a line, 

students determine if the point is on the line and describe their decision-making 

process. (#1 in the test). 

Short Answer (3 Items): 1) Given an equation of a line with a negative slope, students 

create a table of values (coordinates) of points on the line. (#2 in the test). 2) Given a 

graph of a line, students identify the slope of the line. (#4 in the test). 3) Given a 

distance-time graph, students identify the part (one of three) of the graph that 

represents the car moving slowest (PartA).; the slope of another part of the graph (Part 

B).; and the car’s speed in that other part of the graph (Part C). (#7 in the test). 

Multiple-Choice (3 Items): 1) Given a table of (x, y) values representing points on a 

line, students identify one of four graphs that contains all points. (#3 in the test). 2) 

Given a table of values showing a relationship between number of weeks and number 

of cars sold, students identify one of four linear equations that represents the 

relationship. (#5 in the test). 3) Given a linear equation that is not in slope-intercept 
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form, students identify one of the five possibilities for the value of the y-intercept. (#6 

in the test). 

SUBJECTS  

In the US, one week after students completed the MCAS tests in May, 2005,  

classroom teachers in the five districts administered the MAT to 752 Grade 8 students 

and scored the tests.  

 In Korea, 405 Grade 8 students from five schools in Seoul similar in socio-economic 

status to the US schools took the Korean version of the MAT in October 2005.   

In Israel, since linearity is introduced to Grade 9 students, 575 Grade 9 students from 

seven representative schools took the Israeli version of the MAT in April 2006.   

RESULTS FROM 3 COUNTRIES 

Since the test conditions and the grade levels of the subjects were not equivalent across 

countries, data were analysed to identify trends.    

The results of % correct by country are shown in Figure 1. 

 

 

 

 

 

 

 

 

 

Findings revealed that across the three countries, students have minimal understanding 

of two major topics:  points on a line and slope.   

With regard to points on a line, many students didn’t know or weren’t sure that: 1) 

coordinates of points on a graph of a line satisfy the equation of the line, and 2) 

coordinates of points on a line that are presented in tabular form satisfy the equation for 

the line, and when plotted, produce a graph of the line. In a study conducted by 

Schoenfeld, Smith and Arcavi (1993) similar results were found. They asserted that 

this misunderstanding is caused by the absence of what they called the “Cartesian 

Connection.” 

With regard to slope, students in all countries demonstrated maximum difficulty 

determining if lines shown in the coordinate plane have positive or negative slopes. 

Particular difficulty was noted when lines with positive slopes were pictured in the 
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third quadrant of the coordinate plane. As can be seen in what follow, in many cases 

the difficulties encountered by the students are in accord with Acuna’s (2001) claim 

that the visual information in the graph is an important part of graph comprehension. 

The students use their own “gestalt” relation that takes place on the visual 

identification level despite previous training or knowledge of the definition of slope. 

Another misconception demonstrated by the students is in line with Schoenfeld et al’s 

(1993) claim that “students can treat the algebraic and graphical representational 

domains as though they are essentially independent.” 

In the remainder of this paper, discussion will focus on the concept of slope. 

Difficulties with the concept of slope 

Many students had difficulty identifying slopes of lines from graphs of the lines 

(Problem 4 and 7B) and recognizing the relationship between slope and speed in a time 

versus distance graph in Problem 7, parts A and C. From our qualitative analysis and 

comparison of subjects’ incorrect answers to the two problems, several error patterns 

were revealed:  

• Some students did not attend to the direction of the x value change. For 

example, students counted the y value change from the point on the Y axis, 

and identified a negative slope (-3/1) in Problem 3 and a positive slope 

( 90/3=30 (90 is wrong)) in Problem 7B. (See Figure 2) 

• Students did not notice the relation between the direction of a line and the sign 

of its slope and only considered the changes of x and y values. They presented 

positive and negative slopes for lines slanting in the same direction, 

seemingly unconcerned with this inconsistency. As shown in Figure 3, one 

student produced a table of values and calculated the y difference as 3 and 

gave the answer as -3.  

• Students’ calculations were often based on their visual judgement. For 

example, as shown in Figures 2 and 3, students used the estimated coordinate 

(1, 30) instead of the correct lattice point (3, 120) to calculate the slope of  R in 

Problem 7B, and gave an answer of 30.  

• Students did not take into consideration the scale factor on the Y axis (each 

unit represented 30 miles) in calculating slope. Many students answered 4/3 to 

Problem 7B instead of 4 x 30, or 120/3) as shown in Figure 4 

• From different results and different solution processes for Problem 7B and 7C, 

it is clear that many students did not realize the relationship between slope and 

speed in the distance-time graph. (See Figures 2, 3, and 4). 

• Some students confused linearity with proportionality. For example, S4 wrote 

“Since the slope is (increment of y) /(increment of x), and x value and y value 

of  point A are -3 and -5 respectively, the slope is 5/3.” The student presented 

the correct answer for Problem 7B: “In this graph, slope is speed, and speed is 

(distance)/(time). Therefore 120/3=40.”  (Figure 5) 
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       Figure 2: Student’s Response-S1 to Problems # 4 and # 7B 

 

 

 

        Figure 3: Student’s Response-S2 to problems # 4 and # 7B 
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                 Figure 4: Student’s Sample Response-S3 to Problem # 4 and #7B 

 

 

 

                 Figure 5: Student’s Sample Response-S4 to Problem # 4 and #7B 

 

To validate suspicions about the nature of the errors on the test, the CRC conducted 

taped interviews of grade 8 students solving selected MAT problems; one to determine 

the slope of a line from its graph and the other to interpret slope in an application 

problem. The difficulties cited above were confirmed in the interviews. 
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The CRC next approached the problem of identifying factors that might be 

contributing to student difficulties, including problem format, the grade level of the 

students, and the type of instructional program. For example, in the original problem 

#4, no grid lines were shown, and although the axes had hash marks, the scales were 

not indicated. The CRC believed that the lack of grid lines and the unmarked axes 

presented a new situation for the students, one for which they were unprepared. To 

check out this hypothesis, three forms of that problem were developed and 

administered to 1000 grade 8 students. One of the forms was the original presentation 

of the problem, a second showed grid lines, and a third showed grid lines and scales on 

the axes. Scores were analyzed and no significant difference by format was found. 

Similar results of no significant difference were obtained for the factors of grade level 

and instructional program. 

Aptitude-Treatment Interactions (ATI) 

With regard to slope, two kinds of Aptitude-Treatment Interactions (ATI) were 

revealed among groups: 1) In Problem 4 and Problem 7B and 2) in Problem 7B and 7C. 

One type of ATI was in difficulty identifying slopes of lines in Problem 4 and in 

Problem 7B: 1) US students showed the same levels of difficulty with Problem 4 as 

with Problem 7B, 2) Korean students showed greater difficulty with Problem 4, and 3) 

Israeli students showed had greater difficulty with Problem 7B.  
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Figure 6:   FOM Results on Problem 4, 7A, 7B, and 7C 

 

As can be seen in Figure 6, additional ATI were shown in difficulty calculating slope 

and speed from the distance-time graph: 1) US and Israeli students showed greater 

difficulty with calculating slope in Problem 7B than with calculating the speed of a car 

from the distance-time graph in Problem 7C, but 2) Korean students showed greater 
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difficulty calculating the speed of a car from the distance-time graph (Problem 7C) 

than with calculating the slope of a line (Problem 7B). 

ATI might reflect the curriculum and instructional program for linearity in each 

country, as well as the methods and sequences of introducing linearity and the extent of 

connecting concepts to their applications. 

CONCLUSION 

Our results are in agreement with the assertion of Schoenfeld et al (1993) “that some 

aspects of the domain that we take to be trivial are major stumbling blocks for 

students”. Knowing what the underlying skills and perspectives actually are, has 

implications for mathematics curricula and can serve as a guide to developing curricula. 

In fact, the CRC has started this year to look at the elementary school mathematics 

curriculum with the intent of inserting introductory material that will enhance students’ 

understanding of the important key concepts of linearity. Another recommendation is 

related to strategies used to teach those concepts. To enable students to build deep and 

meaningful understanding of the key concepts of linearity, it is recommended that 

teachers use the spiral method and devote much more time to teaching and 

systematically reviewing concepts of slope, y-intercept and the connection between the 

algebraic and graphical representation of a line. 
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MATHEMATICAL BELIEFS IN PICTURES AND WORDS SEEN 

THROUGH “MULTIPLE EYES” 

Stefan Halverscheid and Katrin Rolka 

University of Bremen / University of Dortmund 

                   

When students create a picture on what mathematics is for them and explain their 

works in a text, this data can be examined regarding mathematical beliefs. A research 

design for investigating pictures and texts on mathematical beliefs is carried out by 

pre-service teachers. They work as raters who classify the students’ works according 

to established categories of instrumentalist view, Platonist view, and problem-solving 

view. The agreement of the ratings of the students’ works according to these categories 

turns out to be satisfactory. Correlations between the rated categories and certain 

criteria for the classification of the works are considered.  

MOTIVATION 

The research field of beliefs has a long tradition and is well established (Leder, 

Pehkonen & Törner, 2002). However, researchers mainly employ questionnaires and 

interviews to investigate mathematical beliefs (Hannula, Maijala & Pehkonen, 2004; 

Op ‘t Eynde & De Corte, 2003). Even if this research has provided meaningful insights 

in this complex construct, the difficulties and constraints regarding these methods have 

also been largely discussed. Recently, we have developed and explored a research 

design to investigate student beliefs about mathematics by using other than the above 

mentioned methods to collect data (Halverscheid & Rolka, 2006; Rolka & 

Halverscheid, 2006). We first asked the students to express their views on mathematics 

by drawing a picture and then to explain their picture by writing a text. In case that the 

information based on these two data sources remained unclear, we additionally 

conducted an interview with the students in question. This procedure to employ 

“multiple sources of evidence” in the sense of triangulating the methods is emphasized 

by Schoenfeld (2002, p. 463) as one source of trustworthiness of scientific results. The 

analysis of this rich body of data was guided by Ernest’s (1989; 1991) categories to 

describe mathematical beliefs.  

However, as continuing the analysis with a considerably large amount of pictures, the 

question arises how objective the interpretations of the pictures are. In fact, this 

problem was brought up by participants in the presentation of the method to use 

pictures and texts at PME 30 in Prague. To explore this question we developed a design 

that follows the principle “multiple eyes on the same data” (Schoenfeld, 2002, p. 463) - 

another criterion that Schoenfeld considers necessary for the trustworthiness of 

scientific results. This means that several analysts were trained in order to check the 

independency of the interpretation. This paper deals with presenting our procedure.  
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THEORETICAL FRAMEWORK 

Beliefs are often considered as a construct composed of different categories (Dionne, 

1984; Ernest, 1989; 1991; Grigutsch, Raatz & Törner, 1998). Even if different 

researchers use different notions, the meaning of the categories is more or less the same. 

We employ the notions of Ernest and use this section to recall what is understood by 

them. Further, we give an explanation what the categories mean in the case of pictures 

and texts. Hence, we extended an existing theoretical framework that was mainly 

created and justified for questionnaires and interviews to other methods, namely 

pictures and texts. A detailed description and example pictures that illustrate the 

categories can be found in Halverscheid and Rolka (2006) as well as in Rolka and 

Halverscheid (2006).  

In the instrumentalist view, mathematics is seen as a useful but unrelated collection of 

facts, rules, formulae, skills and procedures. Transferred to pictures and texts, one 

important feature is the disconnectedness of mathematical objects. There are no 

connections made between different ideas mentioned in the works. The pictures often 

consist of an unrelated enumeration of objects that are not ordered to a mathematical 

statement. 

In the Platonist view, mathematics is characterized as a static but unified body of 

knowledge where interconnecting structures and truths play an important role. 

Compared to the first category, the students here try to connect different elements. One 

student, for example, refers to Pythagoras’ theorem as geometry and states that “it is 

fascinating that one can make geometry with algebra”. However, students in this 

category do not create mathematics. The view on mathematics remains static and 

related to historical truths and links between them. 

In the problem-solving view, mathematics is considered as a dynamic and continually 

expanding field in which creative and constructive processes are of central relevance. 

Students in this category produce mathematics with things from their environment that 

they use as starting point for mathematical thoughts and activities.  

The following criteria were worked out as typical for the instrumentalist view, 

Platonist view and problem-solving view (Halverscheid & Rolka, 2006; Rolka & 

Halverscheid, 2006). 

Instrumentalist view:  

• Disconnectedness of the objects 

• No dynamical view on mathematics 

• No mathematical statement 

• Usefulness of mathematics 
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Platonist view: 

• Mathematical topics are represented 

• Elements are connected 

• No story is told, no mathematical activities are shown 

• Historical interest, famous mathematicians 

Problem-solving view:  

• Mathematical activities with painted objects 

• Mathematics as a dynamic field 

•   Students participate actively in the creation of mathematics 

 

These criteria were obtained by independent interpretations of works by the two 

authors. If just one of these criteria is met, this does not necessarily imply that the 

according category is appropriate. The individual character of each work makes it only 

possible to give a catalogue of typical properties; the classification task remains 

interpretative. The rating procedure should also give some idea of whether there is a 

correlation between the classification as the established categories and the criteria 

which are thought to be indicative for mathematical beliefs. Methodologically, it 

would be important to know if there is a correlation between the criteria and the 

classification according to categories of mathematical beliefs. 

 

METHODOLOGY 

As already mentioned, our research was guided by the question to what extend the 

interpretation of the students’ products are independent of the judgments of different 

raters. According to Schoenfeld (2002), it is therefore common to compute the 

interrater reliability “to identify the degree to which independent researchers assign the 

same coding to a body of data” (p. 463). In order to check the interrater reliability, we 

first presented 22 pictures created by fifth-graders to a group of 16 pre-service teachers. 

They were asked to answer the following prompts:  

• What is characteristic for the picture? 

• What is the mathematical idea in the picture? 

• What would you ask the artist in order to understand the picture? 

• Do you have any additional remarks? 

For every picture, 150 seconds of consideration were given. Subsequently, each 

pre-service teacher had to put the pictures that – in his or her eyes – seem to express a 
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related idea into groups. In an essay, every group was described in detail and for every 

of the 22 pictures, it had to be explained why it was classified in the respective group. 

Then, the participants took part in training in order to prepare them for the 

interpretation of the pictures and texts according to Ernest’s categories. They were 

shown example pictures of each category and received the typical features listed above 

which help to identify the category. This training covered a whole lesson. In the next 

lesson, these features were briefly recalled and we then presented six pictures and texts 

out of the 22 for categorization to the students.  

FINDINGS 

Participants’ notes on pictures without text 

The participants’ comments on the pictures were made at a stage when the text had still 

been unknown to them. Their remarks show that it was not that difficult in many cases 

to recognize what objects are illustrated. In most cases, the mathematical content of the 

picture is for the observers restricted to the symbols and objects shown. 

Since, at that moment, the pre-service teachers had not taken part in the training how to 

classify the objects according to the categories of mathematical beliefs, it was our 

intention to see which questions they would like to get answered by the students.  

The pre-service teachers were given deliberately a lot of freedom to make remarks on 

the works. This makes it difficult to relate the remarks to the categories established 

later. However, they tend to have formulated more questions on works, which are rated 

later as belonging to Platonist view, or problem-solving view than to those classified as 

instrumentalist view. Often, concerning those pictures no questions are asked at all. 

Furthermore, many questions look for the connection between certain elements on the 

picture.  

Occasionally, as a feature, which is not represented in the established categories, 

affects play a role. “Is mathematics fun?” or “Do you like calculating?” is asked; 

another pre-service teacher notes that a certain picture describes mathematics within 

nature and suggests interviewing the student to find out whether this is related to the 

student’s feelings on mathematics. The participants also broach the issue of links 

between mathematics as a science and at school. 

Essays on categorization of works 

In this step, the pre-service teachers were given both pictures and texts to work out 

categories for classifying the 22 works. 

The majority of pre-service teachers use categories describing objects or topics which 

are quite explicitly contained in the pictures. The most frequently mentioned categories 

involve mathematical objects (like numbers or geometric figures, which are often 

taken as separate categories), the usefulness of mathematics (mathematics in everyday 

life or mathematics in professions), relations to other sciences or the history of 
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mathematics and science (including examples of mathematicians and scientists like 

Albert Einstein). 

Other aspects of categorizing present in the pre-service teachers’ descriptions refer to 

social relations and mathematics: Mathematics at school, philosophical approaches to 

mathematics, and mathematics in relation to people. Affective components are used in 

two cases, where personal feelings about mathematics and the fun or frustration while 

learning mathematics are discussed. Three pre-service teachers consider the role of the 

students to distinguish how they look at mathematics: They take categories like: 

Associations with mathematics, mathematics as part of a personal philosophy, 

mathematics in the lifespan. 

Data analysis of the rating 

The raters classified each work including picture and text according to the established 

categories of instrumentalist view, Platonist view, and problem-solving view. The 

interrater reliability can be measured with Cohen’s kappa (Cohen, 1960). It was only 

possible to consider 10 raters who participated in all training and rating units. Cohen’s 

coefficient is determined for each pair of raters, and the median of all coefficients is 

given here. The median is 0.71κ = , which is considered to indicate a good degree of 

reliability (Fleiss & Cohen, 1973). 

In the classification in Halverscheid and Rolka (2006), criteria are elaborated as 

indicative for instrumentalist, Platonist or problem-solving view. Six criteria were 

given to the raters because these are considered distinctive for the classification. We 

list these criteria below; in brackets Cohen’s kappa (considered in each case separately 

only for the according criterion) is given for the reliability of this criterion. 

� Work shows several, rather not connected elements ( 0.4κ = ) 

� Usefulness of mathematics  ( 0.33κ = ) 

� Mathematical activities with painted objects ( 0.18κ = ) 

� Description of mathematics as a dynamic field ( 0.67κ = ) 

� Elements are connected ( 0.31κ = ) 

� Interest in (historical or theoretical) development of mathematics ( 0.33κ = ) 

If a work appears as a sample of rather disconnected elements, this is regarded, 

according to Halverscheid & Rolka (2006), as an indication of an instrumentalist view. 

In fact the correlation of the observation that the work shows many rather disconnected 

elements and of the classification of the work as instrumentalist is 0.52.  

If the utility or usefulness of mathematics is stressed, this is considered as an indication 

for an instrumentalist view. The correlation of these categories is only weak: 0.13. It 

seems that the criterion for disconnectedness is much more indicative for the 

instrumentalist view than that of usefulness of mathematics. 
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In the catalogue of categories a difference was made between the disconnectedness of 

elements and the property that a context of mathematical elements is depicted. These 

categories were treated as different categories, and not only as opposite elements 

which negate each other. The category describing that a mathematical context is 

constructed correlates positively with problem solving view (0,23) and with Platonist 

view (0,11), whereas it correlates negatively with instrumentalist view (-0,33). 

DISCUSSION 

Interpreting pictures without texts 

The raters classified each work including picture and text according to the established 

categories. The first step of the rating shows how difficult it is to get reliable 

information from pictures alone. It is often clear which objects are presented, but links 

between certain elements and other information are hard to extract. The affective side 

of mathematics and a discussion of existing or missing links between mathematics at 

school and in the rest of the world come up already by just looking at the pictures. This 

could be an indication that the role of affects for mathematical beliefs could be 

examined more closely. It also would be interesting to understand better the 

differences between beliefs of mathematics and of the learning of mathematics. 

Different approaches to classifications 

Ernest’s well-established classification has been examined intensively in many 

situations. A different question is whether the task to draw a picture and to explain it in 

a text can be extended to further research questions. Categories that raise the topic of 

different social roles of (the learning of) mathematics and of affective components of 

mathematics appear worthwhile considering. The affective side of the works plays a 

role when the works at different grades are considered (Rolka & Halverscheid, 2006). 

Interestingly, several criteria for instrumentalist view are considered by most of the 

pre-service teachers. For the Platonist view, the historical category is often found. 

However, problem-solving view and Platonist view were not distinguished as long as 

they were not presented. This is another indication that Platonist view and problem- 

solving view are difficult to distinguish. One reason why it did not appear in the 

pre-service teachers’ classifications could be the fact that both appear quite rare and 

that the instrumentalist view is clearly dominant. 

Implications of the rating procedure 

The results on the agreement of the ratings indicate a good interrater reliability of the 

interpretation of the works according to the established categories by Ernest. Since the 

rater training of the pre-service teachers did not take too much time, it could be hoped 

that the method of using pictures and texts simultaneously for investigating 

mathematical beliefs could be extended to a method which is not only applicable by 

specialists.  
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The criteria suggested in Halverscheid and Rolka (2006a) show a lower degree of 

reliability. Still, the interrater coefficients reach from weakly positive to positive. The 

criteria can be understood as a catalogue which characterizes the categories, but there 

are no automatic implications. 

For an interpretative task, it is also not surprising that the correlations between the 

criteria and the classification indicate a lower degree of correspondence. The 

disconnectedness of presented elements appears as the most significant indicator for an 

instrumentalist view. Cohen’s kappa for disconnectedness indicates, however, that it 

might be difficult to decide whether the criterion is met.  

Although the methods of data collection applied here differ very much, the quality of 

the rating procedure might have improved by going to three steps – similarly to the 

students who had created their works in several steps, too.  

OUTLOOK 

The method of training the raters and evaluating their classifications is useful to check 

the consistency of the methodology. The agreement of the ratings of the students’ 

works according to the categories of instrumentalist view, Platonist view, and 

problem-solving view turns out to be satisfactory. For an interpretative task, this 

consistency of the method is an important step for the implementation of the theory. It 

allows classifying works by a trained rater. 

A very different question is whether the established categories describe the works 

extensively. For this question, more open, interpretative methods have to be considered. 

The classifications of the works by pre-service teachers indicate that affective and 

social aspects could be rich sources for further analyses.  
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